*Max Bannach, Zacharias Heinrich, Till Tantau, Rüdiger Reischuk*:

**Dynamic Kernels for Hitting Sets and Set Packing.**

In *Proceedings of the 16th International Symposium on Parameterized and Exact Computation (IPEC 2021), *Volume 214 of *LIPIcs, *Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021.

Go to website | Show abstract

Computing small kernels for the hitting set problem is a well-studied computational problem where we are given a hypergraph with n vertices and m hyperedges, each of size d for some small constant d, and a parameter k. The task is to compute a new hypergraph, called a kernel, whose size is polynomial with respect to the parameter k and which has a size-k hitting set if, and only if, the original hypergraph has one. State-of-the-art algorithms compute kernels of size k^d (which is a polynomial kernel size as d is a constant), and they do so in time m? 2^d poly(d) for a small polynomial poly(d) (which is a linear runtime as d is again a constant).
We generalize this task to the dynamic setting where hyperedges may continuously be added or deleted and one constantly has to keep track of a size-k^d hitting set kernel in memory (including moments when no size-k hitting set exists). This paper presents a deterministic solution with worst-case time 3^d poly(d) for updating the kernel upon hyperedge inserts and time 5^d poly(d) for updates upon deletions. These bounds nearly match the time 2^d poly(d) needed by the best static algorithm per hyperedge. Let us stress that for constant d our algorithm maintains a dynamic hitting set kernel with constant, deterministic, worst-case update time that is independent of n, m, and the parameter k. As a consequence, we also get a deterministic dynamic algorithm for keeping track of size-k hitting sets in d-hypergraphs with update times O(1) and query times O(c^k) where c = d - 1 + O(1/d) equals the best base known for the static setting.