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Abstract

Gene order evolution of unichromosomal genomes, for example mi-

tochondrial genomes, has been modelled mostly by four major types of

genome rearrangements: inversions, transpositions, inverse transposi-

tions, and tandem duplication random losses. Generalizing models

that include all those rearrangements while admitting computational

tractability are rare. In this paper we study such a rearrangement

model, namely the inverse tandem duplication random loss (iTDRL)

model, where an iTDRL duplicates and inverts a continuous segment

of a gene order followed by the random loss of one of the redundant

copies of each gene. The iTDRL rearrangement has currently been

proposed by several authors suggesting it to be a possible mecha-

nisms of mitochondrial gene order evolution. We initiate the algo-

rithmic study of this new model of genome rearrangement on signed

permutations by proving that a shortest rearrangement scenario that

transforms one given gene order into another given gene order can be

obtained in quasilinear time. Furthermore, we show that the length

of such a scenario, i. e., the minimum number of iTDRLs in the trans-

formation, can be computed in linear time.

1 Introduction

Genome rearrangements are evolutionary events that change the content or
the arrangement of the genes on the chromosomes. When compared to other
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evolutionary events, e. g., mutations of single nucleotides, genome rearrange-
ments are assumed to occur rarely [1]. By using this and the fact that closely
related species often share the same gene order [2] valuable information about
phylogenetic relationships of organisms can be inferred by analyzing the dif-
ferences in gene orders of contemporary species. Such di↵erences in gene
orders have been shown to be an e↵ective indicator of evolutionary relations
for various animal groups, for instance for Annelida [3] and Brachyura [4].
Two central optimization problems in gene order analysis are the sorting

problem and the distance problem. The former aims to obtain the shortest
scenario of rearrangements that transforms one given gene order into another
one; and the later asks for the minimum number of rearrangements required
by such a transformation. The shortest rearrangement scenario is of partic-
ular importance as it is often assumed to be close to reality and more likely
than a scenario with a larger number of rearrangements [1].

Mitochondrial gene orders are a particularly fruitful source for phyloge-
netic investigations because their gene orders are known for a large number of
species [5]. The relevant genome rearrangements for mitochondria are inver-
sions (a segment of contiguous genes is reversed and the orientation of each
a↵ected gene is flipped), transpositions (two consecutive segments of contigu-
ous genes are exchanged), inverse transpositions (a transposition where one
transposed segment is inverted) and tandem duplication random losses (a
duplication of a contiguous segment of genes, followed by the random loss of
one copy of each of the duplicated genes; henceforth denoted TDRL) [6, 7, 8].

The computational complexities of the sorting problem and the distance
problem depend on the types of the considered rearrangements and on whether
the gene strandedness of the given gene orders is considered (oriented gene
orders) or not (non-oriented gene orders). For example, both problems can
be solved e�ciently for TDRLs [9, 10] and on oriented gene orders for in-
versions (e. g., [11, 12, 13]). In contrast, the sorting problem with inversions
for non-oriented gene orders [14, 15] and the sorting problem with transpo-
sitions [16] are both NP-hard. Several approximation algorithms have been
proposed for these cases, e. g., in [17, 18, 19] for sorting with inversions and
in [20, 21] for sorting with transpositions.

A generalization of the transposition rearrangement is the TDRL. The
TDRL rearrangement was initially studied in [9] for linear gene orders, which
are gene orders that are organized in a linear structure. In their work, the
authors presented a cost value of ↵` to weight a single TDRL that e↵ects
` 2 N genes while ↵ � 1 is a constant. The authors presented polynomial
time algorithms that solve the sorting problem (and therefore the distance
problem) for the cases ↵ = 1 and ↵ � 2. For the case ↵ = 1 it is su�cient to
consider only TDRLs that e↵ect the whole gene order. It was shown in [10]
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that the distance problem and the sorting problem can be solved in polyno-
mial time for circular gene orders, which are gene orders that are organized
in a circular structure. In [5] the set of all sorting TDRLs, which are TDRLs
that reduce the distance of one gene order towards another given gene order,
has been investigated. Bouvel and Rossin studied in [22] the minimum num-
ber of TDRLs (each e↵ecting only ` genes) that are necessary and su�cient
to obtain any gene order from any other gene order. They further proved
that all gene orders that can be obtained after a given number of TDRLs
define classes of pattern-avoiding permutations (which were further analyzed
in [23]). A TDRL variant called mirror TDRL, where the duplicated segment
of genes is reversed and the orientation is unchanged, has been investigated
in terms of pattern-avoiding permutations in [24]. The authors proved that
the sorting problem with mirror TDRLs can be solved in polynomial time.
It is worth to mention that a tandem duplication variant has been suggested
in which the subsequent loss is not completely random, but dependents on
the gene orientation or the transcript structure [25].

In order to compute realistic scenarios of rearrangements, several authors
considered combinations of di↵erent types of rearrangements. The sorting
problem with transpositions and inversions has been investigated for non-
oriented gene orders with exact algorithms having an exponential runtime
(e. g., [26, 27]) and with a machine learning approach [28]. For oriented gene
orders approximation algorithms have been designed (e. g., [29, 30, 31]). It
is known that the sorting problem can be solved in polynomial time on in-
stances in which the number of genes that are e↵ected by a transposition or
an inversion is never greater than two [32]. Walter et al. presented in [33]
an approximation algorithm that solves the distance problem with trans-
positions and inversions for oriented gene orders. When considering trans-
positions, inversions, and inverse transpositions approximation algorithms
(e. g., [34, 35]) and exact exponential-runtime algorithms (see [36]) have been
presented. There are various exact exponential-time algorithms and heuris-
tics that solve the sorting problem for oriented gene orders with all four major
types of mitochondrial rearrangements, see for instance [37, 38, 39].

As mentioned above, combined genome rearrangement models that in-
clude transpositions are typically hard problems where known exact algo-
rithms have an exponential worst case behaviour. Therefore, Yancopoulos et
al. [40] and Bergeron et al. [41] suggested the double cut and join genome
rearrangement (DCJ), which cuts a (potentially multichromosomal) gene or-
der at two di↵erent positions and rejoins the resulting fragments. The DCJ
model has the benefit that it allows to include all four major types of unichro-
mosomal genome rearrangements (and also other rearrangements that are
common in multichromosomal gene orders) while simplifying the computa-
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tional complexity for both, the sorting problem and the distance problem.
Furthermore, the DCJ rearrangement allows the coexistence of multiple chro-
mosomes, which may be linear or circular in the genomes. While such genome
structures are considered to be aberrant for mitochondria, there are some
cases that indicate that cut and join rearrangement mechanisms might be
present in the mitochondrial genome of some animal groups [7]. Since the
usual mitochondrial genomes are organized in a single circular chromosome
[7], there is a need for a tractable genome rearrangement model that in-
cludes all major types of rearrangements of mitochondria and excludes the
coexistence of multiple chromosomes.

In this work we suggest such a genome rearrangement model that gener-
alizes all major mitochondrial rearrangements and we show that the corre-
sponding sorting problem, as well as the distance problem, can be solved in
polynomial time. More precisely, we study the inverse tandem duplication
random loss rearrangement (iTDRL). This rearrangement duplicates and in-
verts a segment of continuous genes of a gene order followed by the random
loss of one of the redundant copies of each gene. Evidence for an iTDRL as
evolutionary mechanism has been found in mitochondrial gene order compar-
isons on the walking stick Ramulus hainanense [42], the tongue sole Cynoglos-
sus semilaevis [43], and the flatfish Crossorhombus azureus [44]. The iTDRL
rearrangement is also motivated by the fact that inverted duplications often
occur in the control region of Insecta mitochondrial genomes [45]. Despite
the fact that there is some evidence for the iTDRL rearrangement, it is still
not entirely clear whether the iTDRL rearrangement corresponds to a specific
molecular mechanisms or the composition of two subsequent rearrangement
events, e. g., a TDRL followed by an inversion. An iTDRL can always be in-
terpreted as the composition of two subsequent rearrangement events, e. g., a
TDRL followed by an inversion. Therefore, further biological evidence is still
necessary to determine that the iTDRL rearrangement corresponds to a spe-
cific molecular mechanism. In this paper, we initiate the algorithmic study of
the iTDRL rearrangement by showing that the sorting problem with iTDRLs
for oriented gene orders can be solved in quasilinear time and that the cor-
responding distance problem can be solved in linear time with respect to the
number of genes of the given gene order. The iTDRL rearrangement provides
the benefit that it can mimic all major mitochondrial rearrangements: i) an
inversion and an inverse transposition can each be represented by at most
two iTDRLs and ii) a transposition and a TDRL can each be represented by
two iTDRLs. Therefore, the distance problem with iTDRLs provides bounds
on the distance problem with all four major mitochondrial rearrangements.
Besides of being computationally tractable, iTDRLs are also motivated by
the fact that inverted duplications often occur in the control region of insecta
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mitochondrial genomes [45].
The paper is organized as follows. Section 2 provides basic definitions and

notations. The number of iTDRLs that are necessary and su�cient to obtain
a permutation having a specific number of maximum increasing substrings
from the identity permutation is investigated in Section 3. Computational
results for the distance problem and the sorting problem with iTDRLs are
given in Section 4. This section also presents a quasilinear time algorithm
for solving the sorting problem for an arbitrary gene order. In Section 5
we discuss that the distance problem with iTDRLs provides bounds on the
distance problem with all four major mitochondrial rearrangements. The
behaviour of these bounds are further investigated on artificial gene order
data in Section 6. A conclusion is given in Section 7.

2 Preliminaries

A signed permutation ⇡ of length n 2 N, denoted by ⇡ = (⇡(1) . . . ⇡(n)), is
a bijection ⇡ : [�n :n] \ {0}! [�n :n] \ {0} such that ⇡(�i) = �⇡(i) for all
i 2 [�n : n] \ {0}. The length of ⇡ is denoted by |⇡|. Signed permutations
are used as a formal model for gene orders in which each element represents
a gene and the sign represents its orientation. When the context is clear,
a signed permutation is called permutation and the + sign of an element is
omitted. The set of all signed permutations of length n is denoted by sPn.
Observe that a signed permutation ⇡ = (⇡(�n) . . . ⇡(�1) ⇡(1) . . . ⇡(n))
can always be represented by ⇡ = (⇡(1) . . . ⇡(n)), as we have ⇡(�i) = �⇡(i)
by definition. The identity permutation (1 2 . . . n) is denoted by ◆.

For a permutation ⇡ = (⇡(1) . . . ⇡(n)) the corresponding permutation
in which the order and the sign of all elements is reversed is defined as
permutation ⇡ with ⇡(i) = �⇡(n + 1 � i) for all i 2 [1 : n]. Note that ⇡ is
uniquely defined for every ⇡ 2 sPn. Figure 1 illustrates an example of ⇡.

A subsequence of ⇡ = (⇡(1) . . . ⇡(n)) is a sequence ⇡(i1)⇡(i2) . . . ⇡(ik)
with 1  i1 < i2 < . . . < ik  n. When all elements in a subsequence S of ⇡
appear consecutively, then S is called a substring of ⇡. We refer to the set of
all signed elements of a subsequence S with E(S) and denote the first (last)
element of S with fS (resp. `S). A substring S = ⇡(i) . . . ⇡(k) (of ⇡ with
1  i  k  n) is called increasing if either i = k or ⇡(j) < ⇡(j + 1) for all
j 2 [i : k � 1]. An increasing substring is called maximal when it cannot be
extended into a longer increasing substring. The set of all maximal increasing
substrings of a permutation ⇡ is denoted by S⇡, and we refer to the number
of such objects with |S⇡|. The notation of maximal increasing substrings is
crucial for the development of our algorithmic framework, as it allows the
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following structural decomposition of signed permutations:

Definition 1 (Maximal Increasing Substring Decomposition). Let ⇡ 2 sPn

be a permutation. The maximal increasing substring decomposition of ⇡ is

the unique list of pairwise disjoint maximal increasing substrings ⌧1⌧2 . . . ⌧|S⇡ |
of ⇡ such that ⇡(1) . . . ⇡(n) = ⌧1⌧2 . . . ⌧|S⇡ | and for all 1  j  |S⇡| holds that

|⌧j| � 1.

For an example of a maximal increasing substring decomposition consider
the permutation ⇡ = (1 2 �3 4 �5 6 7 9 8). The set of maximal increasing
substrings of ⇡ is S⇡ = {1 2,�3 4,�5 6 7 9, 8} and the maximal increasing
substring decomposition of ⇡ is ⌧1⌧2⌧3⌧4 with ⌧1 = 1 2, ⌧2 = �3 4, ⌧3 =
�5 6 7 9, and ⌧4 = 8. Other examples of the maximal increasing substring
decomposition are illustrated in Figure 1 and Figure 3.

A convenient way to work with signed permutations is to represent them
as strings over the alphabet of integers. We can then represent a permuta-
tion as a concatenation of (character) disjoint substrings. This also holds for
reversing the order and the sign of every element of a substring of a permu-
tation, i. e., if S = ⇡(i1) . . . ⇡(ik) is a substring of ⇡, then S is the sequence
for which ⇡(ij) = �⇡(ik+ i1� ij) for all j 2 [1 : k]. Let S1 and S2 be two sub-
strings of a permutation ⇡ such that E(S1)\E(S2) = ;. By S1�S2 we denote
the sequence that is created by sorting the elements S1 and S2 increasingly.
Figure 1 illustrates the given definitions that are related to permutations and
substrings.

As we study signed permutations to model biological structures, we shall
model the biological processes that modify these structures in terms of signed
permutations as well.

Definition 2 (iTDRL). An inverse tandem duplication random loss ⇢ : sPn !

sPn is an mapping that processes an input ⇡ by taking two subsequences L
and R (of ⇡) with E(L) \ E(R) = ; and E(L) [ E(R) = E(⇡) that are out-

putted as ⇢ � ⇡ = LR or as ⇢ � ⇡ = LR. In the first case ⇢ is called right
iTDRL ( riTDRL) and in the second case it is called left iTDRL ( `iTDRL).
We record, in slight abuse of notation, such mappings as ⇢ = (r, E(L), E(R))
for an riTDRL and ⇢ = (`, E(L), E(R)) for an `iTDRL, and we define the

set of all iTDRLs for permutations of length n 2 N as Rn.

From a biological point of view an iTDRL can be seen as first applying
a reversed tandem duplication to ⇡, i. e., ⇡ is placed adjacently to the left
(resp. right) of ⇡ resulting in a duplicated intermediate ⇡⇡ (resp. ⇡⇡), and
to subsequently obtain a new permutation by random loss of one copy of
every duplicated element. See Figure 2 for illustrations of this process. Note
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(a) (b)

Figure 1: Illustration of ⇡ = (�3 �1 4 7 �2 6 5) (a) and ⇡ =
(�5 �6 2 �7 �4 1 3) (b). Every dot represents an element of the cor-
responding permutation. Maximal increasing substrings are illustrated by
continuous lines. The maximal increasing substring decomposition of ⇡ is
⇡ = ⌧1⌧2⌧3 with ⌧1 = �3 �1 4 7, ⌧2 = �2 6, and ⌧3 = 5. Consequently,
S⇡ = {⌧1, ⌧2, ⌧3} and |S⇡| = 3. The substring �1 4 of ⇡ is increasing. While
the sequence �5 2 �4 3 is a subsequence of ⇡, the sequences S1 = �6 2
and S2 = �7 �4 1 3 are substrings of ⇡. For S1 and S2 it holds that
S1 � S2 = �7 �6 �4 1 2 3. Intriguingly, ⇡ is point-symmetrically to ⇡.

that for a given permutation an iTDRL can be represented by a signed per-
mutation and therefore the composition of two functions f and g is denoted
by f � g, i. e., (f � g)(x) := f(g(x)). It is also worth to mention that we have
⇢r � ⇡ = ⇢` � ⇡ = ⇡ for the iTDRLs ⇢r = (r, ;, E(⇡)) and ⇢` = (`, E(⇡), ;).

3 Structural Characterization of Permutations
Generated by Repeated Application of iTDRLs

In this section we characterize the structure of permutations that can be
generated by sequentially applying k iTDRLs to the identity permutation
◆ with respect to the number of maximal increasing substrings. A lower
bound on the (minimal) number of iTDRLs that are necessary to produce
a permutation with a certain number of maximal increasing substrings is
given in Subsection 3.1. A corresponding upper bound is given in Subsec-
tion 3.2. From the lower and upper bound we derive the main theorem in
Subsection 3.3. The insights gained in this section are an important compo-
nent to solve the sorting problem (and the distance problem) for iTDRLs in
Section 4.
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(a) riTDRL
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(b) `iTDRL

Figure 2: Application of the riTDRL ⇢ = (r, {�3, 2, 4, 6}, {�7,�5, 1, 8})
(a) and the `iTDRL ⇢ = (`, {2, 4, 5, 6}, {�7,�3, 1, 8}) (b) to ⇡ =
(4 8 �5 �7 6 1 2 �3) resulting into (4 6 2 �3 �1 7 5 �8) and
(�2 �6 5 �4 8 �7 1 �3), respectively.

3.1 The Lower Bound

This subsection provides a lower bound on the number of required iTDRLs
to generate a permutation from ◆ that has a certain number of maximal
increasing substrings as formulated in the following proposition.

Proposition 1. For a permutation ⇡ 2 sPn that has been obtained from

◆ 2 sPn by the application of k 2 N iTDRLs it holds that either |S⇡|  2k�1

or |S⇡| = 2k�1 + 1 and `⇡ < 0 < f⇡.

For the proof of Proposition 1 we need the following four lemmas.

Lemma 1. Let ⇡ be a signed permutation of length n. Then S 2 S⇡ if and

only if S 2 S⇡.

Proof. Let ⇡ 2 sPn and let S = ⇡(i) . . . ⇡(j) 2 S⇡ with 1  i  j  n. The
fact that S 2 S⇡ implies that S is an increasing substring of ⇡, i. e., it holds
that ⇡(k) < ⇡(k + 1) for all i  k < j. Since S is maximal it cannot be
extended to the left or the right, i. e., either i = 1 (resp. j = n) or if i > 1
(resp. j < n) then ⇡(i� 1) > ⇡(i) (resp. ⇡(j) > ⇡(j + 1)). By the definition
of ⇡ it holds that S = �⇡(j) �⇡(j � 1) . . . �⇡(i) is a substring of ⇡. From
⇡(k) < ⇡(k + 1) for all i  k < j it follows �⇡(k + 1) < �⇡(k), hence S is
an increasing substring of ⇡. If i = 1 and j = n it directly follows that S
cannot be extended in the respective direction. Hence, consider that i > 1 or
j < n. Consequently, ⇡(i� 1) > ⇡(i) or ⇡(j) > ⇡(j+1) holds, which implies
that �⇡(i� 1) < �⇡(i) or �⇡(j) < �⇡(j + 1), respectively. Thus, S is a
maximal increasing substring of ⇡. Consequently, S 2 S⇡ implies S 2 S⇡.
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The other direction, i. e., if S 2 S⇡ then S 2 S⇡, follows from this implication

and the fact that ⇡ = ⇡ and S = S.

Lemma 1 shows that a substring S of a permutation ⇡ is maximal in-
creasing if and only if its reversed substring S is maximal increasing in ⇡.
The following corollary is an immediate consequence of Lemma 1. It shows
that the number of maximal increasing substrings of ⇡ and ⇡ coincide.

Corollary 1. For a signed permutation ⇡ of length n and its reversed per-

mutation ⇡ it holds that |S⇡|=|S⇡|.

Proof. By Lemma 1 it holds that S 2 S⇡ if and only if S 2 S⇡. Hence, S⇡ =
{S1, . . . S|S⇡ |} holds if and only if S⇡ = {S1, . . . , S|S⇡ |} holds. Consequently,
|S⇡| = |S⇡|.

Consider a string of integers S and a substring S 0 of S. The following
lemma proves that the number of maximal increasing substrings of S is always
at least the number of maximal increasing substrings of S 0.

Lemma 2. Let S be a string of integers with the maximal increasing substring

decomposition S = S1 . . . S|SS | and let S 0
be a subsequence of S. The following

equation holds:

|SS0 |  |{i 2 [1 : |SS|] : E(S
0) \ E(Si) 6= ;}|  |SS|.

Proof. Let S 0 = S 0
1 . . . S

0
|SS0 | be the maximal increasing substring decompo-

sition of S 0. The fact that every maximal increasing substring of S 0 con-
tains at least one element, and the fact that S 0 is a subsequence of S (i. e.,
E(S 0) ⇢ E(S)), ensures that for every maximal increasing substring S 0

i of S
0

with i 2 [1 : |SS0 |] we have 1 = |SS0
i
|  |{j 2 [1 : |SS|] : E(S 0

i) \ E(Sj) 6= ;}|.
Consequently, |SS0 | =

P
S0
i2SS0 |SS0

i
| 

P
S0
i2SS0 |{j 2 [1 : |SS|] : E(S 0

i)\E(Sj) 6=

;}| = |{i 2 [1 : |SS|] : E(S 0) \ E(Si) 6= ;}| gives the left equation. The
right equation follows by the fact that |SS| is the maximum of the set
|{i 2 [1 : |SS|] : E(S 0) \ E(Si) 6= ;}|.

The following lemma shows that the sum of the number of maximal in-
creasing substrings over a set of signed permutations is always at least the
number of maximal increasing substrings of a concatenation of subsequences
of the given set of permutations.

Lemma 3. Let ⇡1, . . . , ⇡k 2 sPn and let Si be a subsequence of ⇡i for 2 [1 : k]
such that E(Si) \ E(Sj) = ; for all 1  i < j  k. The following equation
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holds:

|SS1S2...Sk
| =

kX

i=1

|SSi |�K 
kX

i=1

|SSi | 

kX

i=1

|S⇡i |,

where K = |{j 2 [1 : k � 1] : `Sj < fSj+1}|.

Proof. By Lemma 2 we have |SSi |  |S⇡i | for all i 2 [1 : k] and, thus,
the last two equations hold. With ⌧ i1 . . . ⌧

i
|SSi

| we denote the maximal in-

creasing substring decomposition of Si for all i 2 [1 : k] and it holds that
SSi = {⌧ i1, . . . , ⌧

i
|SSi

|}. Now observe that all “internal” maximum increasing

substrings of a Si are present in S1S2 . . . Sk as well, i. e., for all Si it holds
that ⌧ ik 2 SS1S2...Sk

for all k 2 [2 : |SSi | � 1]. Further, we have ⌧ 11 2 SS1S2...Sk

and ⌧ k|SSk
| 2 SS1S2...Sk

since the first and the last maximum increasing sub-

string cannot be extended to the left and the right, respectively. Since
E(Sx) \ E(Sy) = ; for all x, y 2 [1 : k] with x 6= y, we have either `Si > fSi+1

or `Si < fSi+1 for every i 2 [1 : k � 1]. If `Si > fSi+1 then ⌧ i|SSi
| cannot be

extended to the right and ⌧ i+1
1 cannot be extended to the left. Hence, ⌧ i|SSi

|

and ⌧ i+1
1 are counted separately in SS1S2...Sk

as they are in
Pk

i=1 |SSi |�K. If
`Si < fSi+1 then ⌧ i|SSi

|⌧
i+1
1 forms an increasing substring in S1S2 . . . Sk. Con-

sequently, while ⌧ i|SSi
| and ⌧ i+1

1 are both counted separately in
Pk

i=1 |SSi |,

only one string, i. e., ⌧ i|SSi
|⌧

i+1
1 , is counted in SS1S2...Sk

. Observe that this case

is counted in K, which (in this case) reduces
Pk

i=1 |SSi | by one. Altogether,
the first equation of the lemma follows.

The next and final lemma proves that the application of an iTDRL to
a permutation ⇡ always results in a permutation that has less maximal in-
creasing substrings than twice the number of maximal increasing substrings
of ⇡.

Lemma 4. Let ⇡ be a signed permutation of length n with `⇡ < 0 < f⇡. Then
for every iTDRL ⇢ 2 Rn holds |S⇢�⇡|  2|S⇡|�1. Further, if |S⇢�⇡| = 2|S⇡|�1
then `⇢�⇡ < 0 < f⇢�⇡.

Proof. Let ⇡ 2 sPn with `⇡ < 0 < f⇡ and let ⇢ 2 Rn. Then ⇢ � ⇡ can be
written as ⇢�⇡ = ⌧⌧ 0 (resp. ⇢�⇡ = ⌧ 0⌧), where ⌧ is a subsequence of ⇡ and ⌧ 0

is a subsequence of ⇡, if ⇢ is a riTDRL (resp. `iTDRL). Corollary 1 implies
that |S⇡| = |S⇡| and by Lemma 2 it holds that |S⌧ |  |S⇡| and |S⌧ 0 |  |S⇡|.
Then, Lemma 3 implies |S⌧⌧ 0 | = |S⌧ |+ |S⌧ 0 |�K1  |S⌧ |+ |S⌧ 0 |  2|S⇡| and
|S⌧ 0⌧ | = |S⌧ |+ |S⌧ 0 |�K2  |S⌧ |+ |S⌧ 0 |  2|S⇡|, where K1 = 1 (resp. K2 = 1)
if `⌧ < 0 < f⌧ 0 (resp. `⌧ 0 < 0 < f⌧ ) and K1 = 0 (resp. K2 = 0) otherwise.
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Hence, if |S⌧ |  |S⇡|�1 and |S⌧ 0 |  |S⇡|�1, then |S⌧⌧ 0 |  2|S⇡|�2 < 2|S⇡|�1
and |S⌧ 0⌧ |  2|S⇡|� 2 < 2|S⇡|� 1. Consequently, it remains to consider the
cases where |S⌧ |, |S⌧ 0 | � |S⇡|�1 and at least one of |S⌧ | or |S⌧ 0 | is |S⇡|. More
precisely it remains to consider the following cases: i) |S⌧ | = |S⌧ 0 | = |S⇡|,
ii) |S⌧ | = |S⇡| � 1 and |S⌧ 0 | = |S⇡|, or iii) |S⌧ | = |S⇡| and |S⌧ 0 | = |S⇡| � 1.
Let ⇡ = ⇡1 . . . ⇡|S⇡ | be the maximal increasing substring decomposition of
⇡. Then 0 < f⇡ (resp. `⇡ < 0) implies that ⇡1 (resp. ⇡|S⇡ |) contains only
positive (resp. negative) elements. Hence, Lemma 1 implies that ⇡1 (resp.
⇡|S⇡ |) contains only positive (resp. negative) elements, where ⇡ = ⇡1 . . . ⇡|S⇡ |
is the maximal increasing substring decomposition of ⇡. In the following we
prove the statement in the cases (i) and (ii). The proof for Case (iii) is similar
to Case (ii).

Case (i): By Lemma 2 it holds that E(⌧)\E(⇡i) 6= ; and E(⌧ 0)\E(⇡i) 6= ; for
all i 2 [1 : |S⇡|]. Hence, since E(⌧)\E(⇡1) 6= ; (resp. E(⌧)\E(⇡|S⇡ |) 6= ;)
it holds that f⌧ > 0 (resp. `⌧ < 0). Analogously, E(⌧ 0) \ E(⇡1) 6= ;
(resp. E(⌧ 0)\ E(⇡|S⇡ |) 6= ;) implies that f⌧ 0 > 0 (resp. `⌧ 0 < 0). Hence,
`⌧ < 0 < f⌧ 0 (resp. `⌧ 0 < 0 < f⌧ ) if ⇢ is an riTDRL (resp. `iTDRL).
Consequently, by Lemma 3 it holds that |S⌧⌧ 0 | = |S⌧ | + |S⌧ 0 | � K1 =
|S⇡|+|S⇡|�1 = 2|S⇡|�1 and |S⌧ 0⌧ | = |S⌧ |+|S⌧ 0 |�K2 = |S⇡|+|S⇡|�1 =
2|S⇡|� 1. Hence, |S⇢�⇡| = 2|S⇡|� 1 and `⇢�⇡ < 0 < f⇢�⇡.

Case (ii): By Lemma 2 it holds that E(⌧ 0) \ E(⇡i) 6= ; for all i 2 [1 : |S⇡|].
Hence, since E(⌧ 0) \ E(⇡1) 6= ; (resp. E(⌧ 0) \ E(⇡|S⇡ |) 6= ;) it holds
that f⌧ 0 > 0 (resp. `⌧ 0 < 0). By Lemma 2 holds that there exist an
i 2 [1 : |S⇡|] with E(⌧)\ E(⇡i) = ; and for all j 2 [1 : |S⇡|] \ {i} we have
E(⌧) \ E(⇡i) 6= ;.

– Consider first that i = 1, then E(⇡|S⇡ |) \ E(⌧) 6= ;, hence `⌧ < 0.
Consequently, `⌧ < 0 < f⌧ 0 and we have |S⌧⌧ 0 | = |S⌧ |+|S⌧ 0 |�K1 =
|S⇡|�1+|S⇡|�1 = 2|S⇡|�2 < 2|S⇡|�1 by Lemma 3. Analogously,
Lemma 3 yields |S⌧ 0⌧ | = |S⌧ 0 |+|S⌧ |�K2  |S⇡|�1+|S⇡| = 2|S⇡|�1
with `⇢�⇡ = `⌧ 0⌧ = `⌧ < 0 < f⌧ 0 = f⌧ 0⌧ = f⇢�⇡.

– Consider now that i = |S⇡|. Then, by Lemma 2 E(⇡1) \ E(⌧) 6=
;, hence f⌧ > 0. Consequently, `⌧ 0 < 0 < f⌧ and by applying
Lemma 3 again we get |S⌧ 0⌧ | = |S⌧ 0 |+ |S⌧ |�K2 = |S⇡|+ |S⇡|�1�
1 = 2|S⇡| � 2 < 2|S⇡| � 1. Analogously, Lemma 3 also provides
|S⌧⌧ 0 | = |S⌧ | + |S⌧ 0 | � K1  |S⇡| � 1 + |S⇡| = 2|S⇡| � 1 with
`⇢�⇡ = `⌧⌧ 0 = `⌧ 0 < 0 < f⌧ = f⌧⌧ 0 = f⇢�⇡.

– Finally, consider i 2 [2 : |S⇡|�1]. Then, by Lemma 2 E(⇡1)\E(⌧) 6=
; and E(⇡|S⇡ |) \ E(⌧) 6= ;, hence f⌧ > 0 and `⌧ < 0 holds. Thus,
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`⌧ < 0 < f⌧ 0 and `⌧ 0 < 0 < f⌧ is implied. As before, using
Lemma 3 yields |S⌧⌧ 0 | = |S⌧ |+ |S⌧ 0 |�K1 = |S⇡|� 1 + |S⇡|� 1 =
2|S⇡|� 2 < 2|S⇡|� 1 and |S⌧ 0⌧ | = |S⌧ 0 |+ |S⌧ |�K2 = |S⇡|+ |S⇡|�

1� 1 = 2|S⇡|� 2 < 2|S⇡|� 1.

Altogether, either |S⇢�⇡| < 2|S⇡|�1 or |S⇢�⇡| = 2|S⇡|�1 and `⇢�⇡ < 0 < f⇢�⇡
holds, which proves the statement.

Given Lemma 1 to Lemma 4, we are now ready to prove the lower bound
that is stated in Proposition 1.

Proof of Proposition 1. We prove the proposition by induction on k. First
consider the case k = 1. The application of a single iTDRL to ◆ yields a
permutation with at most 21�1 + 1 = 2 maximal increasing substrings. This
can be seen by the following argumentation that considers ⇡0 to be obtained
by applying a single iTDRL ⇢ 2 Rn (i. e., ⇢ is a riTDRL or a `iTDRL) to ◆.
By the definition of an iTDRL, ⇡0 can be written as ⇡0 = ⌧⌧ 0 (resp. ⇡0 = ⌧ 0⌧),
where ⌧ is a subsequence of ◆ and ⌧ 0 is a subsequence of ◆, in the case that ⇢ is
a riTDRL (resp. `iTDRL). Corollary 1 implies |S◆| = |S◆| and by Lemma 2 it
holds that |S⌧ |  |S◆| and |S⌧ 0 |  |S◆|. Certainly, |S◆| = 1. Thus, by Lemma 3
|S⇡0 | = |S⌧⌧ 0 |  |S⌧ | + |S⌧ 0 |  2 (resp. |S⇡0 | = |S⌧ 0⌧ |  |S⌧ 0 | + |S⌧ |  2) if ⇢
is a riTDRL (resp. `iTDRL). Consequently, if one of ⌧ or ⌧ 0 is empty, then
|S⇡0 |  1. If ⌧ and ⌧ 0 are not empty, then |S⌧ | = 1 and |S⌧ 0 | = 1, and since
◆ contains only positive, elements all elements of ⌧ (resp. ⌧ 0) are positive
(resp. negative). Thus, `⌧ 0 , f⌧ 0 < 0 and `⌧ , f⌧ > 0. Since `⌧ 0 < f⌧ it follows
by Lemma 3 that |S⇡0 | = |S⌧ 0⌧ | = |S⌧ 0 |+ |S⌧ |� 1  2� 1 = 1. Additionally,
`⇡0 < 0 < f⇡0 holds for the case that ⇢ is an riTDRL. Altogether, the
statement holds for k = 1.

For the induction step, assume that � is a permutation that has been
obtained from ◆ by the application of k�1 iTDRLs and let ⇡ be a permutation
obtained from � by the application of a single iTDRL ⇢. We can write ⇡ = ⌧⌧ 0

(resp. ⇡ = ⌧ 0⌧), where ⌧ is a subsequence of � and ⌧ 0 is a subsequence of �,
when ⇢ is an riTDRL (resp. `iTDRL). Corollary 1 implies that |S�| = |S�|

and by Lemma 2 holds that |S⌧ |  |S�| and |S⌧ 0 |  |S�|. Then, Lemma 3
implies |S⌧⌧ 0 | = |S⌧ | + |S⌧ 0 | �K1  |S⌧ | + |S⌧ 0 |  2|S�| and |S⌧ 0⌧ | = |S⌧ | +
|S⌧ 0 |�K2  |S⌧ |+ |S⌧ 0 |  2|S�|, where K1 = 1 (resp. K2 = 1) if `⌧ < 0 < f⌧ 0
(resp. `⌧ 0 < 0 < f⌧ ) and K1 = 0 (resp. K2 = 0) otherwise. By the
induction hypothesis |S�|  2k�2+1 and if |S�| = 2k�2+1 then `� < 0 < f�.
Therefore, |S⌧ |  2k�2 + 1 and |S⌧ 0 |  2k�2 + 1. Hence, if |S⌧ |  2k�2 and
|S⌧ 0 |  2k�2, then |S⌧⌧ 0 |  2k�1 and |S⌧ 0⌧ |  2k�1. Consequently, it remains
to consider the cases where |S⌧ |, |S⌧ 0 | � 2k�2 and at least one of |S⌧ | or
|S⌧ 0 | is 2k�2 + 1. Note that this implies that |S�| = 2k�2 + 1 and (by the
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induction hypothesis) it holds that `� < 0 < f�. Lemma 4 now implies that
|S⇡|  2|S�| � 1 = 2(2k�2 + 1) � 1 = 2k�1 + 1. Further, Lemma 4 implies
that |S⇡| = 2k�1 + 1 implies `⇡ < 0 < f⇡.

Altogether, we have either |S⇡| < 2k�1 + 1, or |S⇡| = 2k�1 + 1 and
`⇡ < 0 < f⇡, which proves the statement.

3.2 The Upper Bound

In this subsection we show an upper bound on the minimum number of
iTDRLs that have to be applied to ◆ in order to produce a permutation
with a certain number of maximal increasing substrings as formulated in the
following proposition.

Proposition 2. Let ⇡ 2 sPn \ {◆} such that |S⇡| = 2k�1+1 and `⇡ < 0 < f⇡
or |S⇡|  2k�1

for a k 2 N. Then ⇡ can be obtained by applying k iTDRLs

to ◆.

The main idea to prove Proposition 2 is to perform an induction over k
and then, given a permutation ⇡, apply a “reversed” iTDRL on ⇡ that divides
the number of maximal increasing substrings of ⇡ by two. Essentially, this
reversed operation “sorts” the second (first) half of ⇡ which was created by
an riTDRL (resp. an `iTDRL) back into the first (resp. second) half.

In the following we define two transformations Ti : sPn ! sPn, i 2 [1 : 2],
to construct a permutation Ti(⇡) from ⇡ which has the property that there
always exist an iTDRL ⇢ such that ⇢ � Ti(⇡) = ⇡. With other words, these
transformations are inverted iTDRL operations (which is shown in Lemma 5).
Depending on whether the transformation is the inverse of an riTDRL or an
`iTDRL we define a di↵erent transformation T1 or T2 (and in each case we
also distinguish if the number of maximal increasing substrings of ⇡ is even
or odd). For both constructions consider a signed permutation ⇡ of length n
with the maximal substring decomposition ⇡ = ⇡1 . . . ⇡|S⇡ |.

1) If |S⇡| is even, then T1(⇡) := ⌧1⌧2 . . . ⌧|S⇡ |/2�1⌧|S⇡ |/2, where ⌧1 = ⇡1 �

⇡|S⇡ |, ⌧2 = ⇡2�⇡|S⇡ |�1, . . . , ⌧|S⇡ |/2�1 = ⇡|S⇡ |/2�1�⇡|S⇡ |/2+2, and ⌧|S⇡ |/2 =
⇡|S⇡ |/2 � ⇡|S⇡ |/2+1. If |S⇡| is odd, then T1(⇡) := ⌧1⌧2 . . . ⌧b|S⇡ |/2c⌧d|S⇡ |/2e,
where ⌧1 = ⇡1 � ⇡|S⇡ |, ⌧2 = ⇡2 � ⇡|S⇡ |�1, . . . , ⌧b|S⇡ |/2c = ⇡b|S⇡ |/2c �

⇡d|S⇡ |/2e+1, and ⌧d|S⇡ |/2e = �d|S⇡ |/2e�d|S⇡ |/2e with �d|S⇡ |/2e (resp. d|S⇡ |/2e)
being the smallest substring of ⇡d|S⇡ |/2e that contains all its negative
(resp. positive) elements.

2) If |S⇡| is even, then T2(⇡) := ⌧1⌧2 . . . ⌧|S⇡ |/2�1⌧|S⇡ |/2, where ⌧1 = ⇡|S⇡ |/2+1�

⇡|S⇡ |/2, ⌧2 = ⇡|S⇡ |/2+2 � ⇡|S⇡ |/2�1, . . . , ⌧|S⇡ |/2�1 = ⇡|S⇡ |�1 � ⇡2, and
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⌧|S⇡ |/2 = ⇡|S⇡ |� ⇡1. If |S⇡| is odd, then T2(⇡) := ⌧1⌧2 . . . ⌧b|S⇡ |/2c⌧d|S⇡ |/2e,
where ⌧1 = d|S⇡ |/2e� �d|S⇡ |/2e, ⌧2 = ⇡d|S⇡ |/2e+1� ⇡b|S⇡ |/2c, . . . , ⌧b|S⇡ |/2c =
⇡|S⇡ |�1 � ⇡2, and ⌧d|S⇡ |/2e = ⇡|S⇡ | � ⇡1 with d|S⇡ |/2e (resp. �d|S⇡ |/2e) be-
ing the smallest substring of ⇡d|S⇡ |/2e that contains all its positive (resp.
negative) elements.

See Figure 3 for examples of both transformations. We need the following
four lemmas in order to prove Proposition 2.

The first lemma shows that the transformation T1 (resp. T2) is an inverted
riTDRL (resp. `iTDRL) operation.

Lemma 5. For every ⇡ 2 sPn the following statements are true:

1) There exist an riTDRL ⇢ 2 Rn such that ⇢ � T1(⇡) = ⇡.

2) There exist an `iTDRL ⇢ 2 Rn such that ⇢ � T2(⇡) = ⇡.

Proof. Let ⇡ 2 sPn and let ⇡ = ⇡1⇡2 . . . ⇡|S⇡ | be the maximal increasing
substring decomposition of ⇡. For the sake of a clear argument, we will
only consider the case that |S⇡| is even. The proof for the odd case is fully
analogues. Then T1(⇡) = ⌧1⌧2 . . . ⌧|S⇡ |/2�1⌧|S⇡ |/2. We therefore have that
S1 = ⇡1⇡2 . . . ⇡|S⇡ |/2�1⇡|S⇡ |/2 and S 0

1 = ⇡|S⇡ | ⇡|S⇡ |�1 . . . ⇡|S⇡ |/2+2 ⇡|S⇡ |/2+1 are
disjoint subsequences of T1(⇡).

Furthermore, we have T2(⇡) = ⌧1⌧2 . . . ⌧|S⇡ |/2�1⌧|S⇡ |/2. Now consider the
sequence S2 = ⇡|S⇡ |/2 ⇡|S⇡ |/2�1 . . . ⇡2 ⇡1 and S 0

2 = ⇡|S⇡ |/2+1⇡|S⇡ |/2+2 . . . ⇡|S⇡ |�1⇡|S⇡ |
and observe that they are disjoint subsequences of T2(⇡).

Note that ⇡ = SiS 0
i holds (in the respective case i 2 [1 : 2]) and Si,

S 0
i are disjoint subsequences of Ti(⇡) that together include all elements of

Ti(⇡). Hence, for the riTDRL (resp. `iTDRL) ⇢ = (r, E(S1), E(S 0
1)) (resp.

⇢ = (`, E(S1), E(S 0
1))) it holds that ⇢ � T1(⇡) = ⇡ (resp. ⇢ � T2(⇡) = ⇡).

The transformations T1(⇡) and T2(⇡) have been designed such that the
following lemma holds.

Lemma 6. Let ⇡ be a signed permutation of length n. For each of the per-

mutations Ti(⇡), i 2 [1 : 2], the given respective decomposition into strings

⌧1⌧2 . . . ⌧t (where t is as in the respective case) is a maximal increasing sub-

string decomposition.

Proof. Let ⇡ 2 sPn and let ⇡ = ⇡1 . . . ⇡|S⇡ | be the maximal increasing sub-
string decomposition of ⇡. For the proof it is enough to show that for each
j 2 [1 : t�1] it holds that the last element of ⌧j is larger than the first element
of ⌧j+1, i. e., `⌧j > f⌧j+1 . In the following we describe the proof for the case
that i = 1 (in the case that i = 2 the proof can be done analogously).
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(a) Case T1(⇡)

(b) Case T2(⇡)

Figure 3: Examples of the transformation T1 (a) and T2 (b) that is applied to
⇡ = (�1 �2 �3 �6 9 8 �10 �4 5 7) (a) and ⇡ = (8 �9 �7 10 �5 6 �1 2 �4 3)
(b). The transformation Ti(⇡) with i 2 [1 : 2] is shown on the right in the
respective subfigure. The notation is as in Figure 1. In addition, 3 (resp. �3)
is the smallest substring of ⇡3 that contains all its positive (resp. negative)
elements, i. e., 3 = 6 and �3 = �5. For every permutation that is illustrated,
its maximal increasing substring decomposition is shown on the bottom of a
permutation.
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In this case the lemma has to be shown for T1(⇡) := ⌧1⌧2 . . . ⌧t�1⌧t, where
t = |S⇡|/2 (resp. t = d|S⇡|/2e) in the case that |S⇡| is even (resp. odd). Since
all elements of two sequences X and Y are sorted increasingly in X � Y
it follows that every ⌧j with j 2 [1 : t] is an increasing substring. By the
construction of T1(⇡) it holds that ⌧j = ⇡j � ⇡t+1�j for j 2 [1 : t]. Hence, a
⌧j always contains all elements of ⇡j. Consequently, `⌧j � `⇡j and f⌧j  f⇡j

holds for all j 2 [1 : t]. Now the fact that ⇡j and ⇡j+1 are two maximal
increasing substrings, i. e., `⇡j > f⇡j+1 for j 2 [1 : |S⇡|�1], implies `⌧j � `⇡j >
f⇡j+1 � f⌧j+1 for all j 2 [1 : t � 1]. Therefore, ⌧1, . . . , ⌧t are maximal, which
proves the statement.

The following lemma shows that the application of the transformation T1

(resp. T2) to a permutation ⇡ results in a permutation that has half as many
maximal increasing substrings as ⇡.

Lemma 7. Let ⇡ 2 sPn with |S⇡| > 1. Then |STi(⇡)| = d|S⇡|/2e holds for all
i 2 [1 : 2].

Proof. Let ⇡ 2 sPn with |S⇡| > 1. Consider the case that |S⇡| is even. By the
construction of Ti(⇡) = ⌧1 . . . ⌧|STi(⇡)| with i = 1, 2 it holds that two maximal
increasing substrings of ⇡ always form a new increasing substring in Ti(⇡),
hence |STi(⇡)|  |S⇡|/2. By Lemma 6 it holds that every ⌧i of Ti(⇡) is also
maximal, and hence |STi(⇡)| � |S⇡|/2. Altogether, |STi(⇡)| = |S⇡|/2 if |S⇡| is
even.

Now consider that |S⇡| is odd. By the construction of Ti(⇡) = ⌧1 . . . ⌧|STi(⇡)|
with i = 1, 2 it holds that ⌧1, . . . , ⌧|STi(⇡)|�1 (resp. ⌧2, . . . , ⌧|STi(⇡)|) of Ti(⇡) are
always formed by two maximal increasing substrings of ⇡ and ⌧|STi(⇡)| (resp.
⌧1) is formed by one maximal increasing substring of ⇡ if i = 1 (resp. i = 2).
Hence, |STi(⇡)|  d|S⇡|/2e. By Lemma 6 it holds that every ⌧i of Ti(⇡) is also
maximal, hence |STi(⇡)| � d|S⇡|/2e. Altogether, |STi(⇡)| = d|S⇡|/2e if |S⇡| is
odd.

Consider a signed permutation ⇡ with at least two maximal increasing
substrings such that the first (last) element of ⇡ is positive (resp. negative).
The following lemma proves that the application of the transformation Ti,
i 2 [1 : 2], to ⇡ preserve this structure, i. e., the first (last) element of Ti(⇡) is
positive (resp. negative).

Lemma 8. Let ⇡ be a signed permutation of length n with |S⇡| > 1, |S⇡|

odd, and `⇡ < 0 < f⇡. Then it holds that `Ti(⇡) < 0 < fTi(⇡) for i = 1, 2.

Proof. Let ⇡ 2 sPn and let ⇡ = ⇡1 . . . ⇡|S⇡ | be the maximal increasing sub-
string decomposition of ⇡ with |S⇡| > 1 and |S⇡| is odd. The fact that 0 < f⇡
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(resp. `⇡ < 0) implies that ⇡1 (resp. ⇡|S⇡ |) contains only positive (resp. neg-
ative) elements. Consequently, ⇡1 (resp. ⇡|S⇡ |) contains only negative (resp.
positive) elements. Therefore, ⇡1 � ⇡|S⇡ | (that is the leftmost maximal in-
creasing substring in T1(⇡)) contains only positive elements. Analogously,
⇡|S⇡ | � ⇡1 (the rightmost maximal increasing substring in T2(⇡)) contains
only negative elements and, thus, we have 0 < fT1(⇡) and `T2(⇡) < 0. By
definition we have that the rightmost (resp. leftmost) maximal increasing
substring of T1(⇡) (resp. T2(⇡)) is �d|S⇡ |e � d|S⇡ |e (resp. d|S⇡ |e � �d|S⇡ |e).
Since d|S⇡ |e (resp. �d|S⇡ |e) contains only positive (resp. negative) elements,
it holds that d|S⇡ |e (resp. �d|S⇡ |e) contains only negative (resp. positive)
elements. Therefore, �d|S⇡ |e � d|S⇡ |e (resp. d|S⇡ |e � �d|S⇡ |e) contains only
negative (resp. positive) elements, thus `T1(⇡) < 0 and 0 < fT2(⇡).

With Lemma 5 to Lemma 8 at hand, we are finally ready to proof the
claim of Proposition 2.

Proof of Proposition 2. Let ⇡ 2 sPn \ {◆}. We prove the statement by in-
duction on k. For the base case assume k = 1. There exists the two cases:
i) |S⇡|  21�1 = 20 = 1 or ii) |S⇡| = 21�1 + 1 = 20 + 1 = 2 and `⇡ < 0 < f⇡.
Consider Case (i). Since every permutation has at least one maximal in-
creasing substring we have |S⇡| = 1. Since ⇡ is unequal to ◆ it follows that
it can be written as ⇡ = (⇡(1) . . . ⇡(t) ⇡(t+ 1) . . . ⇡(n)), where ⇡(1) < . . . <
⇡(t) < 0 < ⇡(t + 1) < . . . < ⇡(n) and t 2 [1 : n � 1]. Hence, for `iTDRL
⇢ = (`, {�⇡(1), . . . ,�⇡(t)}, {⇡(t+1), . . . , ⇡(n)}) it holds that ⇢� ◆ = ⇡. Now
consider Case (ii). Since 0 < f⇡ (resp. `⇡ < 0) it holds that the left (resp.
right) maximal increasing substring of ⇡ contains only positive (resp. nega-
tive) elements. Hence, ⇡ can be written as ⇡ = (⇡(1) . . . ⇡(t) ⇡(t+1) . . . ⇡(n)),
where ⇡(t + 1) < . . . < ⇡(n) < 0 < ⇡(1) < . . . < ⇡(t) and t 2 [1 : n � 1].
Then for the riTDRL ⇢ = (r, {⇡(1), . . . , ⇡(t)}, {�⇡(t+ 1), . . . ,�⇡(n)}) we
have ⇢ � ◆ = ⇡.

For the induction step let k > 1. It is enough to consider the following two
cases: i) |S⇡|  2k�1 or ii) |S⇡| = 2k�1+1 and `⇡ < 0 < f⇡. Lemma 7 implies
|STi(⇡)|  2k�2 if Case (i) holds and |STi(⇡)|  d(2

k�1 + 1)/2e = 2k�2 + 1 if
Case (ii) holds. Further, Lemma 8 ensures that `Ti(⇡) < 0 < fTi(⇡) if Case (ii)
holds. By Lemma 5, ⇡ can be obtained by applying a single riTDRL (resp. a
`iTDRL) to T1(⇡) (resp. T2(⇡)) and by the induction hypothesis Ti(⇡) with
i = 1, 2 can be obtained by applying k � 1 iTDRLs to ◆. Hence, ⇡ can be
obtained by applying k iTDRLs to ◆.

Remark 1. Observe that the proof of Proposition 2 shows that the permu-

tation ⇡ in Proposition 2 can always be obtained from ◆ by a single iTDRL

(i. e., riTDRL or `iTDRL) followed by k � 1 riTDRLs.
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3.3 The Main Theorem

The following theorem characterizes permutations ⇡ that have a certain num-
ber of maximal increasing substrings with respect to the number of iTDRLs
that are necessary and su�cient to obtain ⇡ from ◆.

Theorem 1. Let ⇡ 2 sPn \{◆} be such that either |S⇡| = 2k�2+1 and `⇡ > 0
or f⇡ < 0, 2k�2 + 1 < |S⇡|  2k�1

, or |S⇡| = 2k�1 + 1 and `⇡ < 0 < f⇡ for

a k 2 N. Then k iTDRLs are necessary and su�cient in order to obtain ⇡
from ◆.

Proof. Let ⇡ 2 sPn \ {◆} be such that either 2k�2 + 1 = |S⇡| and `⇡ > 0 or
f⇡ < 0, 2k�2 + 1 < |S⇡|  2k�1, or |S⇡| = 2k�1 + 1 and `⇡ < 0 < f⇡ for a
k 2 N. Proposition 1 shows that at least k iTDRLs are necessary to obtain
⇡ from ◆. Proposition 2 shows that k iTDRLs are su�cient to obtain ⇡ from
◆. Altogether, the theorem follows.

4 Solving the Distance and Sorting Problem
for iTDRLs

This section considers the distance problem and the sorting problem for
signed permutations with respect to iTDRLs.

Definition 3 (Distance Problem). The distance problem for a permuta-

tion ⇡ 2 sPn with respect to iTDRLs aims to find the minimum number of

iTDRLs that are required to produce ⇡ from ◆, i. e.,

d(◆, ⇡) := argmink2N0
{9 ⇢1, . . . , ⇢k 2 Rn : ⇢k � . . . � ⇢1 � ◆ = ⇡}. The sought

minimum d(◆, ⇡) is called distance between ◆ and ⇡, or (iTDRL) distance if

the context is clear.

Observe that Definition 3 indirectly covers the distance between arbitrary
permutations ⇡, � 2 sPn as d(⇡, �) = d(⇡�1

�⇡, ⇡�1
��) = d(◆, ⇡�1

��), where
⇡�1 is the unique inverse permutation of ⇡ defined by ⇡�1(e) := i if and only
if ⇡(i) = e for all i, e 2 [�n :n] \ {0}.

In the following lemma, we make use of Theorem 1 to give a closed formula
for the iTDRL distance.

Lemma 9. The iTDRL distance of ◆ to any signed permutation ⇡ 2 sPn\{◆}
is given by

d(◆, ⇡) =

(
log2(|S⇡|� 1) + 1 if 9 k 2 N with |S⇡ | = 2k�1 + 1

and `⇡ < 0 < f⇡;

dlog2 |S⇡|e+ 1 else.
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Proof. Let ⇡ 2 sPn \ {◆}. Then either |S⇡| = 2k�2 + 1 and `⇡ > 0 or f⇡ < 0,
2k�2 + 1 < |S⇡|  2k�1, or |S⇡| = 2k�1 + 1 and `⇡ < 0 < f⇡ for a k 2 N.
Hence, either 2k�2 < |S⇡|  2k�1 or |S⇡| = 2k�1 + 1 and `⇡ < 0 < f⇡
holds. By Theorem 1 we have that k iTDRLs are necessary and su�cient to
obtain ⇡ from ◆, i. e., d(◆, ⇡) = k. Consider first 2k�2 < |S⇡|  2k�1. This
implies k � 2 < log2 |S⇡|  k � 1 and hence k � 1  dlog2 |S⇡|e  k � 1.
Consequently, it holds that d(◆, ⇡) = k = dlog2 |S⇡|e + 1. Now consider
|S⇡| = 2k�1 + 1. Then |S⇡| � 1 = 2k�1 implies log2(|S⇡| � 1) = k � 1.
Consequently, d(◆, ⇡) = k = log2(|S⇡|� 1) + 1.

Note that Lemma 9 implies that the distance of a signed permutation
⇡ of length n can be computed by calculating the number of its maximal
increasing substrings which can be done in time O(n).

Motivated by the tractability of the distance problem, the following sec-
tions study the sorting problem of signed permutations with respect to iTDRLs,
i. e., one aims to find a minimum length sequence of iTDRLs that transforms
one given permutation into another given permutation. The relevance of
this problem is motivated by its biological connection: a minimum length
sequence of rearrangements can be interpreted as a shortest path of mu-
tations e↵ecting the (possibly mitochondrial) gene order of the considered
species that are represented by signed permutations. Hence, solving the
sorting problem e�ciently allows to trace back gene order evolution under
the considered model to a limited extent.

Definition 4 (Sorting Problem). The sorting problem for a signed permu-

tation ⇡ with respect to iTDRLs aims to find a minimum length sequence of

iTDRLs that transforms ◆ into ⇡.

Similarly to the distance problem, Definition 4 indirectly covers the prob-
lem to find a shortest sequence ⇢1 = (d1, L1, R1), . . . , ⇢k = (dk, Lk, Rk) 2 Rn

of iTDRLs between two arbitrary permutations ⇡, � 2 sPn (i. e., ⇢k � . . .�⇢1 �
⇡ = �), since such a sequence can be obtained by firstly finding ⇢0k�. . .�⇢

0
1�◆ =

⇡�1
� � with ⇢0i = (d0i, L

0
i, R

0
i) 2 Rn and subsequently obtaining the sought

iTDRLs ⇢1, . . . , ⇢k by d1 = d01, Li = {⇡(e) : e 2 L0
i}, and Ri = {⇡(e) : e 2 R0

i}

for all i 2 [1 : k].
In the following we present an algorithm that solves the sorting problem

with respect to iTDRLs. Recall that by Remark 1 there is always a solution
of the considered sorting problem that contains at most one `iTDRL. There-
fore, the following algorithm computes for a given permutation ⇡ 2 sPn a
sequence ⇢1, . . . , ⇢d(◆,⇡) 2 Rn of iTDRLs such that ⇢d(◆,⇡) � . . . � ⇢1 � ◆ = ⇡ and
either ⇢1, . . . , ⇢d(◆,⇡) are riTDRLs or ⇢1 is a `iTDRL and ⇢2, . . . , ⇢d(◆,⇡) are
riTDRLs. The pseudo code of the algorithm can be found in Algorithm 1.
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The main idea is to iteratively apply a “reversed” iTDRL transformation T1

or (once in the last step) T2 to the given permutation ⇡ to obtain a permu-
tation Ti(⇡) that has at most half as many maximal increasing substrings as
⇡ (see Lemma 7). By that process a minimum length sequence S of trans-
formations (of T1 or T2) is obtained in reversed order, i. e., S transforms ⇡
into ◆. Subsequently, the sought sequence of iTDRLs transforming ◆ into ⇡
is obtained by computing the inverting iTDRL for every transformation in S
and reversing the relative order of all computed iTDRLs. Since Algorithm 1
uses exactly d(◆, ⇡) iTDRLs to construct the sought sequence of iTDRLs, it
solves the sorting problem for a given permutation ⇡ with respect to iTDRLs
exactly.

Let ⇡ 2 sPn. The case ⇡ = ◆ (i. e., the sorting sequence of iTDRLs is
empty) is handled in lines 1-2. If otherwise ⇡ 6= ◆ then ⇢d(◆,⇡), . . . , ⇢1 2 Rn

are iteratively computed in the lines 3-19. By Lemma 9 either d(◆, ⇡) =
dlog2 |S⇡|e + 1 or d(◆, ⇡) = log2(|S⇡| � 1) + 1 and both cases are handled
in lines 3-6. For every j 2 [d(◆, ⇡) : 1] the maximal increasing substring
composition of ⇡ is calculated in Line 8 and – depending on j and whether
|S⇡| is even or odd – either T1 or T2 is applied to ⇡ in lines 13-19 or lines 9-12.
More precisely, if j = 1 and f⇡ < 0 (i. e., ⇡ is exactly one maximal increasing
substring that contains negative and possibly positive elements) then T2 is
applied to ⇡ in Line 10 and in Line 11 the corresponding `iTDRL (which
exists by Lemma 5) is computed. Otherwise, i. e., either j > 1 or j = 1 and
f⇡ > 0, the permutation ⇡ is substituted by T1(⇡) and the corresponding
riTDRL ⇢j 2 Rn is constructed as defined in the proof of Lemma 5. This
iterative procedure gives ⇢1, . . . , ⇢d(◆,⇡) 2 Rn which are returned in Line 20.

For a runtime analysis of Algorithm 1 consider ⇡ 2 sPn. Certainly,
the check whether ⇡ = ◆ (Line 1), the computation of d(◆, ⇡) (lines 3-6), the
computation of the maximal increasing substring decomposition (Line 8), the
construction of T1(⇡) and T2(⇡) (lines 14, 17 and Line 10), and the construc-
tion of ⇢j (lines 11, 15, 18) can be done in time O(n). Therefore, lines 8-19 are
executed in time O(n) and they are executed at most dlog2 |S⇡|e + 1 times.
Since |S⇡|  n it follows that Algorithm 1 has a runtime in O(n log2 n).

Algorithm 1 is implemented in C++ and it is freely available on http:
//pacosy.informatik.uni-leipzig.de/spitdrl.
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Algorithm 1: Pseudo code of sorting by iTDRLs
Data: ⇡ 2 sPn

Result: ⇢1, . . . , ⇢k 2 Rn such that ⇢k � . . . � ⇢1 � ◆ = ⇡
1 if ⇡ == ◆ then
2 return ;;
3 if 9 h 2 N0 : |S⇡| = 2h + 1 and `⇡ < 0 < f⇡ then
4 k = log2(|S⇡|� 1) + 1;
5 else
6 k = dlog2 |S⇡|e+ 1;
7 for j  k, . . . , 1 do
8 ⇡ = ⇡1 . . . ⇡|S⇡ |;
9 if j == 1 and f⇡ < 0 then // Application T2

10 ⇡  �1 � 1 = T2(⇡);
11 ⇢j = (`, E(�1), E(1));
12 continue;
13 if |S⇡| is even then // Application T1

14 ⇡  ⇡1 � ⇡|S⇡ | . . . ⇡|S⇡ |/2 � ⇡|S⇡ |/2+1 = T1(⇡);
15 ⇢j = (r, E(⇡1 . . . ⇡|S⇡ |/2), E(⇡|S⇡ | . . . ⇡|S⇡ |/2+1));
16 else
17 ⇡  ⇡1 � ⇡|S⇡ | . . . �d|S⇡ |/2e � d|S⇡ |/2e = T1(⇡);
18 ⇢j = (r, E(⇡1 . . . �d|S⇡ |/2e), E(⇡|S⇡ | . . .d|S⇡ |/2e));
19 continue;
20 return ⇢1, . . . , ⇢k;
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5 Bounding the Distance Problem with re-
spect to Mitochondrial Rearrangements

In the following, the four types of rearrangement operations that are relevant
for mitochondrial gene orders evolution [7] are defined formally. Let ⇡ 2 sPn,
and let L and R be two character disjoint subsequences of ⇡ such that E(L)[
E(R) = E(⇡). Further, let X and Y be two consecutive substrings of ⇡, i. e.,
X, Y and either XY or Y X are substrings of ⇡. The inversion ⇢I(X) applied
to ⇡ reverses the order and it toggles the sign of every element of X. The
inverse transposition ⇢iT(X, Y ) applied to ⇡ exchanges the order of X and Y
and, in addition, it reverses the order and toggles the sign of every element
in X. The TDRL ⇢TDRL(L,R) applied to ⇡ duplicates ⇡ in tandem, followed
by the loss of all elements of L (resp. R) in the left (resp. right) copy of the
duplicated intermediate. A transposition ⇢T(X, Y ) applied to ⇡ swaps the
order of X and Y . It is not hard to see that a transposition is a special case
of the TDRL rearrangement. When all these four types of rearrangements
are considered, we henceforth use the term 4-type rearrangements for the
sake of brevity. According to the definition of the distance with respect to
iTDRL, the minimum number of 4-type rearrangements needed to transform
one given signed permutation into another given signed permutation is called
4-type rearrangement distance.

Up to now, it is still unknown whether the distance problem and the
sorting problem (for a permutation) with respect to the 4-type rearrange-
ments can be solved in polynomial time. However, the solutions obtained
by solving the respective problem for the same permutation with respect to
the iTDRL rearrangement can be used to obtain approximate solutions. The
fundamental idea is to realize the connection between iTDRLs and 4-type
rearrangements: 1) every iTDRL can be mimicked by at least one and at
most two 4-type rearrangements, and 2) every 4-type rearrangement can be
mimicked by at least one and at most two iTDRLs. On one hand every
iTDRL has either the same e↵ect as an inversion (see Figure 4(a)) or an
inverse transposition (see Figure 4(b)), or it can be mimicked by both, a
TDRL followed by an inversion, as well as a TDRL followed by an inverse
transposition (see Figure 4(c)). One the other hand, an inversion and an
inverse transposition have either the same e↵ect as an iTDRL, or they can
be mimicked by two iTDRLs, see Figure 4(a) and Figure 4(b), respectively.
A TDRL (and therefore also transposition) can always be mimicked by two
iTDRLs (see Figure 4(d)).

The fact that every iTDRL can be mimicked with at most two 4-type
rearrangements implies that the 4-type rearrangement distance is less than
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(a) Replacement iTDRL and inversion (b) Replacement iTDRL and inverse

transposition

(c) iTDRL mimicked by TDRL and inver-

sion or inverse transposition

(d) TDRL mimicked by two iTDRLs

Figure 4: Sequences of 4-type rearrangements (resp. iTDRLs) that mimic
an iTDRL (resp. 4-type rearrangement). Rearrangements are illustrated
by black arrows. A permutation is framed by a thick (resp. thin) con-
tinuous black square if it is the input (resp. output) of a rearrangement
that is mimicked. An intermediate permutation of a sequence of rearrange-
ments is framed by a dashed black square. Intervals of a permutation are
denoted by W , X, Y , Z, L, and R, where L = L(1) . . . L(m) and R =
R(1) . . . R(n). (a) The inversion ⇢I(Y ) can be mimicked by (`, E(X Y ), E(Z))
(resp. (r, E(X), E(Y Z))), followed by (`, E(X), E(Y )[E(Z)) (resp. (r, E(X)[
E(Y ), E(Z)). Observe that if X (resp. Z) is empty, then the second
iTDRL is an identity mapping, hence the first iTDRL and the inversion
have the same e↵ect. (b) The application of ⇢iT(Y,X) (resp. ⇢iT(X, Y )))
can be mimicked by the application of (`, E(W )[ E(Y ), E(X)[ E(Z)) (resp.
(r, E(W )[E(Y ), E(X)[E(Z))), followed by (`, E(W ), E(Y )[E(X Z)) (resp.
(r, E(W Y ) [ E(X), E(Z))). Observe that if W (resp. Z) is empty, then the
second iTDRL in the respective sequence is the identity mapping, hence the
inverse transposition has the same e↵ect as the first iTDRL. (c) The iTDRL
(d, E(L), E(R)) (resp. (d, E(R), E(L))) can be replaced by applying the TDRL
⇢TDRL(L,R) (resp. ⇢TDRL(R,L)), followed by the inversion ⇢I(R) if d = r,
or ⇢I(L) if d = ` (resp. ⇢I(R) if d = ` or ⇢I(L) if d = r). Alternatively, the
iTDRL (d, E(L), E(R)) (resp. (d, E(R), E(L))) can be mimicked by applying
the TDRL ⇢TDRL(R,L) (resp. ⇢TDRL(L,R)), followed by the inverse trans-
position ⇢iT(L,R) if d = `, or ⇢iT(R,L) if d = r (resp. ⇢iT(R,L) if d = `,
or ⇢iT(L,R) if d = r). (d) The TDRL ⇢TDRL(L,R) (resp. ⇢TDRL(R,L))
can be mimicked by iteratively applying two times (d, E(L), E(R)) (resp.
(d, E(R), E(L))), where d 2 {`, r}.
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twice the iTDRL distance, i. e., d4-type(⇡, �)  2d(⇡, �), where ⇡, � 2 sPn,
and d4-type(⇡, �) denotes the 4-type rearrangement distance for ⇡ and �. In
addition, the fact that every 4-type rearrangement can be mimicked by at
most two iTDRLs implies d(⇡, �)  2d4-type(⇡, �). Combining both inequa-
tions gives the following bounds on the 4-type rearrangement distance:

d(⇡, �)

2
 d4-type(⇡, �)  2d(⇡, �). (1)

Consequently, the iTDRL distance is a 2-approximation for the 4-type rear-
rangement distance. In addition, an approximated sequence of 4-type rear-
rangements sorting ⇡ to � can also be obtained by replacing every iTDRL
by either an inversion, an inverse transposition, a TDRL and an inversion,
or a TDRL and an inverse transposition as explained above.

6 Experiments

In this section we present experimental results for Algorithm 1 on sets of
randomly generated benchmark problems. The aim of the experiment is to
investigate the usefulness of the bounds on the 4-type rearrangement distance
that are implied by the iTDRL distance.

Algorithm 1 has been applied to 2425 sets of benchmark problems that
have been generated as explained in the following. To obtain a test permuta-
tion of the benchmark set B↵,�, exactly � 2 [1 : 25] 4-type rearrangement were
applied by starting with the identity permutation ◆ of length ↵ 2 [3 : 100].
For each of the � rearrangements, the type was first chosen uniformly at
random, then a uniformly at random chosen rearrangement of the type that
has been determined was applied. A resulting test permutation was included
to the benchmark set B↵,� only in the case that it was not equal to the
identity permutation. For every combination of ↵ and � this procedure was
repeated until every benchmark set B↵,� contains 100 signed permutations.
Observe that by construction for each permutation ⇡ 2 B↵,� it holds that
1  d4-type(◆, ⇡)  �.

Recall that for every permutation ⇡ 2 B↵,� the bounds d(◆, ⇡)/2 
d4-type(◆, ⇡)  2d(◆, ⇡) are implied by the iTDRL distance. We refer to
these bounds as iTDRL bounds. To investigate the contribution of the
iTDRL bounds on the 4-type rearrangement distance, the following im-

provement values for the lower bound and the upper bound were computed:
For every set B↵,� the improvement value of the lower (upper) bound is
defined as lb↵,� := d(◆, ⇡)/2 � 1 if d(◆, ⇡)/2 � 1 and 0 otherwise (resp.
ub↵,� := � � 2d(◆, ⇡) if � � 2d(◆, ⇡) and 0 otherwise). Hence, a large (small)
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Figure 5: Average improvement values for the lower bound (a) and the upper
bound (b) for each benchmark set B↵,� with ↵ 2 [3 : 100] and � 2 [1 : 25].
Each tile represents a benchmark set and its grey value the corresponding
improvement value.
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improvement value implies that bounds obtained by the construction of the
benchmark set are less (resp. more) improved by the iTDRL bounds.

Figure 5(a) illustrates the average improvement values of the lower bound
of all benchmark sets. The average improvement value lb↵,� varies from 0
for B3,1 to 2.49 in B100,25. The figure shows that lb↵,25 increases continuously
for increasing permutation length ↵. This e↵ect is reduced as � decreases
such that the average improvement value of the lower bound is constant 0
for all benchmark sets with � = 1. The figure also shows that the di↵erence
lb↵,25�lb↵,1 increases with increasing ↵. Both e↵ects follow from the fact that
longer permutations are able to contain more maximal increasing substrings,
which enables a larger iTDRL distance resulting in a larger lower bound.

The average improvement values for the upper bound are illustrated in
Figure 5(b). The figure shows that ub↵,� = 0 for all benchmark sets B↵,� with
approximately ↵  2 log2 �. For the benchmark sets with approximately ↵ >
2 log2 � it can be seen that the improvement values increase as � increases.
Both e↵ects follow from the fact that the iTDRL distance (and therefore the
upper bound it implies) grows logarithmically with respect to the size of the
permutation, while the upper bound on the 4-type rearrangement distance �
that is obtained by the construction grows linear. The results reflect that the
upper bound � is very loose. This is reasonable, since Formula (1) implies
that the 4-type rearrangement distance grows logarithmically with respect
to the length of the permutation and not linear as �.

Both figures show that the benefit of the iTDRL bounds on the 4-type
rearrangement distance is negligible for permutations that have a small size or
that are separated by less rearrangements. However, if longer permutations
are separated by a greater number of rearrangements, the bounds become
more e↵ective.

7 Conclusion

In this work the problem of computing the minimum number of iTDRL re-
arrangements (and a corresponding shortest scenario) that are necessary to
transform one given gene order into another given gene order has initially
been studied. It has been shown that the minimum number of iTDRLs
needed for such a transformation can be computed in linear time, and that a
corresponding scenario can be obtained in quasilinear time. Using the benefit
that every type of major mitochondrial rearrangement (resp. every iTDRL)
can be mimicked by at most two iTDRLs (resp. major mitochondrial rear-
rangements) and the fact that the distance problem with respect to iTDRLs
is computationally tractable, we have shown that an upper bound and a lower

26



bound on the minimum number of inversions, (inverse) and a lower bound
on the minimum number of inversions, (inverse) transpositions, and TDRLs
that are necessary to transform one given gene order into another given gene
order can be computed e�ciently. The e↵ectiveness of these bounds has been
investigated on simulated signed permutations.
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