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Abstract

Parameterized complexity theory provides important tools to generate and an-

alyze reasonable fast algorithms for hard problems. Current research mainly

focuses on the question whether parameterized problems are fixed-parameter

tractable or not, i. e., if there is a fast algorithm solving them. Thus, the only

considered resource is time, while parameterized space and circuit complexity

is often omitted, although these resources are useful in classical complexity the-

ory as well. A recent work from Elberfeld, Stockhusen, and Tantau provides a

framework of parameterized space and circuit classes to cover this area [26]. Al-

though the framework provides parameterized space and circuit classes, as well

as tools to analyze them, there is still a lack of complete problems for most of

these classes. The objective of this thesis is to resolve this issue by analyzing

widely known problems with respect to the framework and, thus, populate the

different classes. This will lead to new upper bounds for many natural prob-

lems, together with a couple of new lower bounds for some of them. Moreover,

we will also be able to collide the upper and lower bounds of some of these

problems and, hence, finally resolve the complexity of them.

Zusammenfassung

Die parametrisierte Komplexitätstheorie liefert wichtigeWerkzeuge zum finden

und analysieren schneller Algorithmen für harte Probleme. Im Fokus aktueller

Forschung liegt dabei hauptsächlich die Frage, ob ein parameterisiertes Problem

fixed-parameter tractable ist und somit ein schneller Algorithmus zum Lösen

jenes Problems existiert. Daher ist die Zeit meistens die einzige Ressource, die

untersucht wird, und das, obwohl sich Komplexitätsklassen, die auf Platz oder

Schaltkreisen basieren, als sehr nützlich in der klassischen Komplexitätstheorie

erwiesen haben. Eine aktuelle Arbeit von Elberfeld, Stockhusen und Tantau be-

handelt diese Problematik und stellt ein Framework mit parametrisierten Platz-

und Schaltkreisklassen zur Verfügung [26]. Obwohl dieses Framework neben den

Klassen auch Werkzeuge enthält, um diese zu untersuchen, so fehlen doch für

viele Klassen vollständige Probleme. Das Ziel dieser Arbeit ist es daher diese Klas-

sen mit Leben zu füllen; dazu untersuchen wir bekannte Probleme in Bezug auf

dieses Framework und präsentieren entsprechende Ergebnisse. So werden wir

für viele natürliche Probleme neue obere Schranken, sowie einige neue untere

Schranken erhalten. In einigen Fällen werden wir diese Schranken des Weiteren

zusammenführen und die entsprechenden Probleme somit endgültig bezüglich

ihrer Komplexität klassifizieren.
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1 INTRODUCTION

Complexity theory is the part of theoretical computer science that deals with the ques-

tion of how much resources are needed to solve an instance of a particular problem.

Measuring the amount of needed resources with respect to the size of the instance

allows a classification of the problem. However, for many practical problems not only

the instance size is known, but also many different details about the instance, too.

Parameterized complexity theory is the part of complexity theory that takes these

additional information into account in order to classify problems more precisely.

Besides a few exceptions, the only considered resource in the field of parameterized

complexity is time. This fact stands in contrast to the objective of a more precise

classification of problems, since other resources like space and circuit-depth play an

important roll in classical complexity theory, too. It therefore seems reasonable to

study parameterized space and circuit classes in order to obtain new insights into the

complexity of problems of theoretical and practical interest. This work is based on a

recent work from Elberfeld, Stockhusen, and Tantau whom provided a framework of

parameterized space and circuit classes. Most of the classes of this framework are still

unexplored and miss natural complete problems. Moreover, most natural problems

were never studied with respect to parameterized space and circuit classes. The objec-

tive of this work is to change the situation by analyzing different natural problems with

respect to the mentioned framework. This will give new insights into the complexity

of many of these problems and will help us to better understand the complexity of

them. Furthermore, this approach will allow us to resolve the complexity of some

problems, for which a classification with respect to parameterized time complexity

did fail so fare.

1.1 A Brief Introduction to Parameterized Complexity

Before we discuss the objective and results of this work in detail, we will give a brief

introduction to parameterized complexity to define the area we are operating in. The

following story with Jacqueline will serve as a little guide throughout this introduc-

tion: Jacqueline was asked to organize a scientific workshop and already has received

a long list of scientists whom she should invite. Unfortunately, she knows that some

of these scientists do not got along with each other and since the workshop should be

as peaceful as possible, she has to ensure that no two scientists are invited whom do
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not get along with each other. Of course, she still wants to invite as many people as

possible. To ensure that the workshop will become a real success, Jacqueline got an-

other restriction: There are a couple of scientists that closely work together in groups.

These groups are known to be highly productive on workshops and, thus, she has to

ensure to invite these groups. She wants to do this independently from their relation

to other researchers, since the members of such groups will most likely stay in their

group and, hence, are always peacefully. It may intuitively seems “easy” or “hard” for

Jacqueline to solve these problems, but she is more interested in a precise, objective

measurement of this “difficulty”.

So our task starts here, since providing such measurements is the main objective of

complexity theory. The usual way to measure how “difficult” it is to solve a problem,

is to formalize the scenario as a decision problem and measure the amount of resources

a classical computational model, like the Turing machine or circuits, needs to actually

solve an instance of the problem. Natural resources for Turing machines are time and

space; in case of circuits, this corresponds to the depth of the circuit and the total

amount of gates it is using, respectively. Both problems from above can be formalized

as a graph problem: For the first problem, each scientist is represented by a vertex

and between two vertices exists an edge if, and only if, the two researchers do not get

along with each other. We now have to find a set of vertices such that the deletion

of these vertices removes all edges from the graph, i. e., we are looking for a minimum

vertex-cover. For the second problem, each scientist is again represented by a vertex,

this time we place an edge between two vertices if, and only if, the corresponding

researchers collaborate with each other. We now search for a set of vertices such that

each vertex of the set is connected to the rest of the set, i. e., we have to solve the

problem of finding a maximum clique. Throughout this work, we will indicate formal

problems in small caps, e. g., vertex-cover or clique, and always will define them in

the following manner:

Problem 1 (vertex-cover)
Instance: A graph G = (V,E) together with an integer k.
Question: Is there a set C ⊆ V with |C| ≤ k such that each edge of G is incident

to at least one vertex of C?

Problem 2 (clique)
Instance: A graph G = (V,E) together with an integer k.
Question: Is there a set C ⊆ V with |C| ≥ k such that the vertices of C are

pairwise adjacent?

If we are a bit more accurately, a decision problem is defined as language over an

alphabet Σ, like the Latin alphabet or the Binary alphabet Σbin = {0, 1}. The com-

putational task is then to decide whether a given word w ∈ Σ? is a member of this

language or not. For example, in case of vertex-cover the corresponding language is

defined as:
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vertex-cover = {w | w ∈ {0, 1}? with w encodeing a graph G = (V,E) and an

integer k such that there is a subset C ⊆ V with |C| ≤ k

that contains at least one endpoint of each edge. }.

In most cases, the representation as a problem is sufficient and we do not have to

explicitly consider the underlying languages. Throughout this work, this will almost

always be the case.

Once we have defined our scenario as a formal decision problem, we can analyze how

much resources a computational model needs in order to solve it. We can classify a

problem by grouping all problems that are solvable within the same resource bound in

a complexity class. Famous examples are P and L, the classes of all problems solvable

in polynomial time or with a logarithmic amount of space, respectively. The most

important question in the most scenarios is, whether a problem is tractable or not.

Simply spoken, it is the question of whether a reasonably fast algorithm exists that

decides the problem or not. Unfortunately for us, the problems of the workshop

organization problem from above, i. e., vertex-cover and clique, are known to be

intractable and, thus, under standard assumptions there is no fast algorithm solving

them.

Jacqueline was a little bit disappointed by our results and already started to think about

how she can explain this to her boss. Nevertheless, after a couple of coffees she had an

idea. Last time, she only explained the general problem, but she omitted some details.

However, Jacqueline knows that it is a workshop about theoretical computer science

and as far as she remembers, theoretical computer scientists are quite calm, so that she

does not expect to uninvite more than 20 researchers. Moreover, she also knows that

groups of theoretical computer scientists are almost always pretty small, only about 5

to 10 members. Now Jacqueline asks herself if these problems are still so hard, if we

consider these additional details.

This question is reasonable, since standard complexity theory measures the ‘difficulty”

of solving a problem only with respect to the instance size. But in the new scenario,

we know a lot more about the instance. We call such a restriction a parameter, which

describes certain properties of the instance. Formally, a parameterization of a language

L ⊆ Σ? is a function κ : Σ? → N that assigns a natural number to each instance of the

problem. The parameterized version of the problem then is the tuple (L, κ). In our

case, the parameter is either the number of people we have to uninvite or the maxi-

mum size of a group of scientists, respectively. More precisely, we consider instances

w = (G, k) and have κ1(w) = k. Throughout this work, we indicate the parame-

terized version of a problem with the prefix p-, e. g., p-vertex-cover and p-clique.
In the definition of parameterized problems, we add a line with the corresponding

parameter. The definition of p-vertex-cover is as example shown on the next site:
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Problem 3 (p-vertex-cover)
Instance: A graph G = (V,E) together with an integer k.
Parameter: k
Question: Is there a set C ⊆ V with |C| ≤ k such that each edge of G is incident

to at least one vertex of C?

Many natural problems have a whole list of possible parameterizations. If we address

the problem with a specific parameterization, we add the corresponding parameter

to the index of p: pk-vertex-cover would be vertex-cover parameterized with

κ1. If we consider another parameter, for example the degree of the graph δ, i. e.,
κ2(w) = δ(G), we would denote the corresponding problem by pδ-vertex-cover. If
we use multiple parameters in the index of p, we implicitly use a corresponding pa-

rameterization function, e. g., pk,δ-vertex-cover is the problem parameterized with

κ3(w) = k + δ(G).

In parameterized complexity theory, we measure how “difficult” it is to solve a prob-

lem as a function of resource cost with respect to both, the instance size and the

parameter. This allows us to analyze problems in much more detail and gives us a

deeper understanding of the complexity of these problems. Corresponding to the no-

tation of classical complexity theory, an important part is to decide whether a problem

is fixed-parameter tractable or not. Which, again simply spoken, means that a reason-

able fast algorithm exists for the problem and a certain parameter. Formally, the set of

fixed-parameter tractable problems is defined by the parameterized complexity class

FPT, which is the set of parameterized problems solvable by a Turing machine in time

f(κ(w)) · poly(|w|) for a computable function f . Fortunately, pk-vertex-cover is

known to be fixed-parameter tractable and, thus, efficiently solvable for Jacqulines

instances. On the other hand, this is not the case for pk-clique, since this problem is

known to be fixed-parameter intractable.

Nevertheless, Jacqueline attended the theoretical computer science workshop and it

was a great success through our help. However, Jacqueline wonders why the most

people at the workshop only consider parameterized time classes and check off a

problem’s complexity as resolved, once it is shown to be fixed-parameter tractable

or intractable. She ask herself if this stands in contrast to the claim of parameterized

complexity to understand the complexity of problems more accurately. After all,

she knows that the study of other resources like space or circuit-depth has generated

important results in classical complexity theory as well.

She is right: At this point – one problem classified as fixed-parameter tractable, one as

fixed-parameter intractable – parameterized complexity theory stops most of the time

and, thus, the only considered resource is time. But in order to obtain a deeper under-

standing of the complexity of these problems, it seems logical to study parameterized

space and circuit classes as well. A recent work by Elberfeld, Stockhusen, and Tantau

introduced a framework of parameterized space and circuit classes [26]. The basic pa-

rameterized space classes of this framework are defined as parameterized counterparts

to L and NL, in a similar fashion as FPT is defined with respect to P. These classes are

called paraL and paraNL and are defined as the sets of parameterized problems solvable
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by a deterministic or nondeterministic Turing machine using f(κ(w)) + O(log |w|)
space for a computable function f , respectively. Besides these para-classes, the frame-

work also considers so called X-classes, namely XL and XNL. The idea behind these

X-classes is to consider sliced parameterization, that is, considering only one slice of the

problem. A slice of a parameterized problem is the set of all instances of the problem

for one fixed parameter, i. e., X-classes hold problems that are efficiently solvable if we

consider the parameter as a constant. Thus, the corresponding classes XL and XNL are

defined as the sets of problems solvable by a deterministic or nondeterministic Turing

machine using f(κ(w)) · O(log |w|) space for a computable function f , respectively.

Elberfeld, Stockhusen, and Tantau went one step further and also analyzed param-

eterized circuit classes as well. Important circuit classes are paraNCi, paraACi, and

paraTCi, which are the sets of problems solvable by NC-, AC-, or TC-circuits of size

f(κ(w)) · poly(|w|) and depth f(κ(w)) +O
(
logi |w|

)
, or constant depth in case of

i = 0. The corresponding X-classes are XNCi, XACi, and XTCi, which are the sets of

problems solvable by NC-, AC-, and TC-circuits of size poly(|w|)f(κ(w)) and depth

f(κ(w)) · O
(
logi |w|

)
.

They also introduced concepts like simultaneous time and space bounds to the world

of parameterized complexity, which does not make sense in classical complexity the-

ory, but becomes interesting if we consider parameterized problems. An important

class of this kind is XNLFPT, the set of problems solvable by a XNL-machine in time

f(κ(w)) · poly(|w|). Another concept they introduced is bounded nondeterminism,

which describes deterministic computational models that get a few nondeterministic

bits, which we call choice bits, as additional input.

The semantic of these choice bits is, with respect to nondeterminism, quite natural:

A corresponding computational model accepts if, and only if, there is at least one

possible selection of choice bits such that the underlying computation accepts. The

most important classes of this kind are the paraWC-classes, which are the problems

solvable by a C-machine or circuit that gets additional f(κ(w)) · O(log |w|) choice
bits as input. More precisely: An instance w of a parameterized problem (Q,κ) is
accepted by a paraWC-computational model if there is a word b ∈ Σ? with a size

of |b| ≤ f(κ(w)) · O(log |w|) such that the tuple (w, b) is accepted by a C-machine.

These bits can be seen as a few pointers to the input, for example to mark a couple of

vertices in a graph problem. The resulting classes are paraWL, paraWNL, paraWNCi,

paraWACi, and paraWTCi.

A second kind of bounded nondeterminism is used in paraβC-classes, which are the

sets of problems solvable by a C-machine or circuit that gets f(κ(w)) · O(log |w|)
read-once choice bits. These read-once choice bits can be seen as a few nondetermin-

istic decisions. The only class that really fits to this definition and that is of interest is

paraβL.

For more details about the different classes and their connection consult the paper by

Elberfeld, Stockhusen, and Tantau [26]. The figure on the next site summarizes the

classes that are important for this work in different colors: paraW-classes, paraβ-classes,

and X-classes.
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We have now defined all necessary classes. Furthermore, we also have discussed the

concepts of tractability and intractability. Nevertheless, we have not discussed how

we can classify a problem with respect to these properties. Here we distinguish two

cases: The first thing we want to do, is to prove that a problem is tractable, or more

generally that is just a member of a particular class. For a language L ⊆ Σ? and a

complexity class C, a proof for L ∈ C is quite natural: We just have to provide an

algorithm that is computable within the resource bounds of C and which decides for

every w ∈ Σ? whether w is a element of L or not. Such results can be seen as upper

bounds on the problem’s complexity. The second objective, the proof that L /∈ C,
turns out to be much harder in most cases. In order to describe this property, we need

the terms of reduction and C-hardness.
Reductions. A reduction from a problem L1 ⊆ Σ?

1 to a problem L2 ⊆ Σ?
2 is, simply

said, a way to describe howwe can decide if a wordw is an element ofL1, by deciding if

another word w′ is an element of L2. In other words, a reduction defines an algorithm

that solves L1 and that uses a L2-solver as subroutine. The complexity theoretic

interpretation of such a reduction is, that it can not be more “difficult” to solve L1

than to solve L2. If we are able to solve L2 within some resource bounds, then we

are also able to solve L1 within the same resource bounds with the algorithm defined

by the reduction (if the computation of the reduction itself does not need significant

more resources). In parameterized complexity theory, the most used reduction is the

FPT-reduction, which is defined as follows:

Definition 4

Let (Q1, κ1) and (Q2, κ2) be two parameterized problems over the alphabets Σ1 and

Σ2, respectively. Let furthermore f : N → N and g : N → N be two computable

functions. A mapping R : Σ?
1 → Σ?

2 is called a FPT-reduction from (Q1, κ1) to

(Q2, κ2) if it fulfills the following three properties for all w ∈ Σ?
1:

. w ∈ Q1 if, and only if, R(w) ∈ Q2;

. R(w) is computable by a Turing machine in time f(κ1(w)) · poly(|w|);

. k2(R(w)) ≤ g(κ1(w)).

Since we consider parameterized space and circuit classes that are partly “weaker”

than FPT, we also need “weaker” reductions. To obtain such reductions, we use the
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definition from above and change the resource bound in which we have to compute

R(w). IfR(w) is computable by a Turing machine using f(κ1(w))+O(log |w|) space,
then we call the corresponding reduction a paraL-reduction. If R(w) is computable

by a DLOGTIME-uniform family of constant depth AC-circuit with a maximum size

of f(κ1(w)) ·poly(|w|), then we call the reduction a paraAC0-reduction. The latter is

also known as parameterized first-order reduction (pfo-reduction). We say furthermore

that two languages L1 and L2 are equivalent with respect to a certain reduction, if L1

reduces to L2 and L2 reduces to L1 with respect to the corresponding reduction.

Hardness and Completeness. Since we are now able to compare the “difficulty” of two

problems, a reasonable question is which problems are the “hardest ones” within a

complexity class C .

Definition 5

A language L is called to be hard for a complexity class C (to be C-hard) with respect

to a certain reduction, if each language L′ ∈ C reduces to L via such a reduction.

Thus, if L ⊆ Σ? is C-hard, then we can solve each problem in C using L. Therefore
we obtain the important result:

Fact 6

Let C1 and C2 be two complexity classes with C1 ⊆ C2. For every problem L that is

hard for C2 with respect to a reasonable weak reduction, we have L ∈ C1 if, and only

if, C1 = C2.
Under the assumption that the complexity hierarchy is not collapsing, we therefore

can interpret hardness-results as lower bounds for the complexity of a problem. If the

lower and upper bounds collide, we define a problem as complete for the corresponding

complexity class:

Definition 7

Let L ⊆ Σ? be a language and C be a complexity class. We say L is complete for C (or

C-complete) if, and only if, L ∈ C and L is C-hard.

1.2 Contributions of this Work

The crux with the framework from Elberfeld, Stockhusen, and Tantau is that it is still

fairly unexplored and, thus, there are only a few problems classified into the different

classes and intersections of classes. The objective of this work is to tackle this issue

by analyzing certain problems that are well known in the parameterized complexity

community with respect to parameterized space and circuit complexity. Roughly

summarized, we will analyze problems of the following “types”:

Automata intersection problems. We study the well known automata intersection prob-

lem, in which the objective is to determine if a set of automata accepts a common

word. We will prove that different parameterizations of this problem obtain different

new upper bounds in the framework of parameterized space and circuit classes. This

approach will also resolve an open problem from Wareham, which was reported in

the compendium by Cesati [13]. Moreover, we will collide the new upper bound with
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a new lower bound for the standard parameterization of the problem (the number of

automata) and, hence, provide a natural complete problem for parameterized space

classes.

Vertex ordering problems. Vertex ordering problems are problems of the following kind:

Given a graph, canwe order the vertices such that the resulting embedding of the graph

has some specific property? Such problems are quite useful in different applications

like graph drawing or bioinformatics. Unfortunately, they are also intractable and,

moreover, most parameterized approaches with respect to the resource time failed.

Thus, we will analyze these problems with respect to parameterized space classes

and provide some new upper bounds for them. Unfortunately, new lower bounds or

completeness results are still missing.

Colored reachability problems. We will study problems that have a very natural struc-

ture and that fit well into the setup of parameterized complexity theory. In such

colored reachability problems the instance is a graph with colored edges, the objective

is to determine if there is a path between two given vertices that only uses edges of a

given amount of different colors. We will use such problems to provide new complete

problems with a handy structure, which can be used for further reductions. However,

in order to do so, we will provide complete problems for many different classes and

will find problems in the intersection of these classes as well. Furthermore, we will

show that many natural variants of these problems require their own class. This will

again indicate that the intersections of complexity classes play an important role in

parameterized complexity.

Graph separation problems. The last kind of problems we consider are graph separation

problems. Here the task is to cut a given graph into pieces such that these pieces

have some specific property. These problems have applications in image and video

processing. We will mainly focus on the problem of cutting ` vertices away from a

graph. This problem is for different parameterizations known to be W[1]-hard. But

considered with respect to parameterized space and circuit complexity, we will show

that different versions of the problem lie in different complexity classes. Thus, we

obtain a more detailed understanding of this problem.

1.3 Related Work

First research in the field of parameterized space classes, especially about parameter-

ized logspace, was made by Cai, Chen, Downey, and Fellows [12]. They introduced

the classes paraL and paraNL under different names and showed that several prob-

lems from FPT lie in these classes. Later Chen, Flum, and Grohe [14] and Flum and

Grohe [34] provided some (quite technical) complete problems for natural parameter-

ized space classes. Finally, Guillemot showed that some natural problems are complete

for (quite technical) parameterized space classes [38]. Besides these works, a detailed

study of parameterized space classes did, as far as the author knows, not happen until

Elberfeld, Stockhusen, and Tantau [26] presented a framework covering a couple of

parameterized space and circuit classes. This framework contains natural parameter-

ized space classes as well as natural complete problems for them. However, they did
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only study a few problems with respect to this framework and a classification of many

problems is still missing.

A first application of the framework that Elberfeld, Stockhusen, and Tantau provided,

is the problem of finding a feedback vertex set, i. e., the question whether it is possible

to delete k vertices from a given graph in order to make it cycle free. While it was

already known that the problem lies in FPT for both, directed and undirected graphs,

they showed that the undirected version lies in paraWL while the directed version

lies in paraWNL [26]. This fact already shows that the consideration of space provides

a more detailed view on the complexity of the problem. These results are especially

interesting, because they also connect to classical complexity theory, since the directed

version only falls to paraWL if L = NL holds [26]. The following figure illustrates

the mentioned parameterized time and space classes as well as both versions of the

problem.

FPT

paraWNL

paraWL

pk-dfvs

pk-ufvs

The importance of the framework becomes even clearer, if we consider the previously

introduced problem of finding cliques. The parameterized clique problem is known

to be W[1]-complete, a class which lies above FPT in the parameterized complexity

hierarchy. Thus, one would expect a weak reduction, like a paraL-reduction, from

the directed feedback vertex set problem to the problem of finding a clique. But

parameterized space complexity tells us, that the parameterized clique problem lies

in paraWL and this implies that the mentioned reduction only exists if L = NL holds.

W[1]

FPT

paraWNL

paraWL

pk-dfvs

pk-clique

Results like these suggest that our understanding of classical complexity theory does
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not perfectly mirror into parameterized complexity theory, or at least, that the con-

sideration of parameterized time classes is not enough.

The results also show that parameterized problems can lie in the intersection of dif-

ferent parameterized complexity classes, and we will see during this work, that this is

quite often the case. This indicates that such intersections play an important role in

the understanding of parameterized complexity. Maybe these intersections are even

more important than classical completeness-results, since if a problem lies in the inter-

section of two complexity classes, this often implies that is unlikely that the problem

is complete for one of these classes (unless some classes do collapse).

1.4 Structure of this Work

Each chapter of this work discusses one particular problem or a set of similar prob-

lems. Thus, the chapters are self-contained and have not to be read in order. At the

end of each chapters, the reader will find a complexity map – a little diagram show-

ing the relationship between the complexity classes considered in the chapter. Such

complexity maps were already shown earlier in this introduction. A complexity class

is visualized as a parabola in these diagrams. If a parabola is completely inside another

one, this means that the corresponding complexity class is a subset (or equal) to the

other complexity class. If two parabolas intersect each other, then the correspond-

ing complexity classes intersect each other as well. Problems are visualized as little

dots. An empty dot inside a parabola means that the corresponding problem lies in

the complexity class represented by the parabola; a filled dot means that the problem

is complete for the class. If the dot is inside the intersection of parabolas, this natu-

rally means that the problem lies in the intersection of the corresponding complexity

classes.

This work handles problems in the order we already used in the “Contribution of this

Work” section: the first problem we consider is the automata intersection problem in

Chapter 2. Afterwards, we move forwards to vertex ordering problems in Chapter 3.

In the following chapter, Chapter 4, we will consider colored reachability problems,

which will somehow represent the core of the work. Here we will study many differ-

ent complexity classes “around” paraL and paraWL, and provide complete problems

for most of them. Finally, we close the thesis with graph separation problems in Chap-

ter 5.
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2 AUTOMATA INTERSECTION PROBLEM

Automata theory is at the hearth of computer science. While the computational

power of a single deterministic finite automaton is rather limited, the cooperation

of many automata becomes quite powerful. Such a cooperation can be modeled as an

automata intersection problem, in which we are given a set of automata and have to

decide whether there is a common word accepted by all automata or not. Unfortu-

nately, this intersection problem is known to be PSPACE-complete [49]. On the other

hand, such problems are well suited for a parameterized approach, since they deliver

many natural parameters. For example, the size of the alphabet can often be used as

a parameter, since the alphabet is often known to be the binary or the latin alphabet.

Also the size of the common word can be used as a parameter in many applications;

for example, if the automata should work with a block code, the block length is a

natural parameter for this particular problem. The reader can find an introduction

to automata theory with respect to the intersection problem in a paper by Saks and

Statman [67], an introduction to Turing machines can be found in the textbook from

Reischuk [64]. Let us start this chapter with a formal definition of the problem:

Problem 8 (dfa-intersection)
Instance: A set of k deterministic finite automata A1, . . . , Ak , each defined as the

tuple Ai = (Σ, Qi, δi, q
i
0, Fi) with |Σ| = s and |Qi| = q. Furthermore,

a numberm is given withm ∈ N ∪ {∞}.
Question: Is there a wordw ∈ Σ? with |w| ≤ m that is accepted by all k automata?

In an equivalent manner we define fdfa-intersection and nfa-intersection,

Parameter Complexity

k W[t]-hard

m W[2]-hard

k,m W[1]-hard

q, k open

q,m W[2]-hard

k,m, q FPT

the versions in which the automata are acyclic, i. e., the

accepted languages are finite, or the automata are not

restricted to be deterministic, respectively. ToddWare-

ham spend a lot of effort to analyze the parameterized

version of the automata intersection problem with re-

spect to parameterized time classes [72]. His results are

summarized in the table on the right. We will analyze

the parameterized automata intersection problem with

respect to parameterized space and circuit classes in this

11



Parameter Complexity

k XNL-complete

m paraWL ∩ XAC0

k,m paraWL ∩ XAC0

q, k paraAC0

q,m paraWNC1 ∩ XAC0

k,m, q paraAC0

chapter. This will allow us to resolve the open

problem and get a deeper inside into the struc-

ture of the problem. Our results are shown in

the table on the right side. Thus, we give first

completeness results for the parameterized ver-

sion of the problem and are able to classify dif-

ferent versions of the problem along the com-

plexity hierarchy. By proving that the automata

intersection problem parameterized by q, k lies

in paraAC0, we also solve an open problem by Wareham, since this result implies

membership in FPT as well. We will furthermore adapt the results for the case of

nondeterminstic finite automata and other special cases of the problem.

2.1 Parameterized by the Number of Automata

We first analyze pk-dfa-intersection, the version just parameterized by the number

k of automata. In classical parameterized complexity theory, this version is known

to be W[t]-hard for every t ∈ N [13]. The following theorem provides, as far as

the author knows, the first completeness result for a version of the parameterized

automata intersection problem.

Theorem 9

The problem pk-dfa-intersection is complete for XNL under paraAC0-reduction.

Proof. We first prove membership. A nondeterministic Turing machine can solve the

problem by guessing the word w and simulating all the automata in parallel. Since

the machine has only a logarithmic amount of space, it will guess one symbol after

another and simulate the automata step by step. To guess the symbols, the machine

will guess and store dlog2 |Σ|e bits, which represent the symbol. To simulate the

automata, the machine needs additional k ·dlog2 qe bits of memory to store the current

states of the automata. Thus, the overall amount of needed storage is bounded by

f(k) · O(log2(|Σ|+ q)) and therefore the algorithm is computable by a XNL Turing

machine.

For hardness, we will reduce from p-bounded-ntm-halting, which is known to be

XNL-complete [26].

Problem 10 (p-bounded-ntm-halting)
Instance: A nondeterministic Turing machineM and an integer k.
Parameter: k
Question: DoesM halt on the empty string using at most k memory cells?

For the reduction letM = (Σ,Γ,∆, qS , F ) and k ∈ N be given. We first transform

M to an equivalent machineM ′ with the following properties: The tape alphabet is

Γ′ = Γ∪{ξ} for ξ 6∈ Γ; the behavior ofM ′ is the same as ofM , butM ′ has only one
accepting configuration. In this configuration, the head of the Turing machine has to

point to the first cell of the tape, which is the cell to which the head pointed at the
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beginning of the computation. Furthermore, each cell used during the computation

has to contain ξ in this configuration. We now face the following task: Describe k
automata, such that the accepted languages of these automata share a word if, and only

if, M ′ halts on the empty string using at most k memory cells. The nondeterminism

of M ′ will be “simulated” through the question whether or not there is a word that

is accepted by all automata. The instructions for the machine will be encoded in a

new alphabet used by the automata and the behavior of the machine then will be

simulated by the automata itself. First, we will define the alphabet Π on which the

automata work. This alphabet consists of the following symbols, representing the

natural meaning of Turing machine instructions: (σ1, σ2, �) with σ1, σ2 ∈ Γ′ and
� ∈ {., /, ./}. Such an instruction defines the following behavior: If the current cell

contains σ1, then replace it with σ2 and move the head corresponding to � (move

right, move left, or do not move).

Let us now describe the automata. Each automaton has |Γ′| · k states, which can be

arranged in a matrix with |Γ′| rows and k columns. We will interpret the states as

follows: If the automaton Ai is in a state in column c, the head of the Turing machine

points to cell c (note that this does not depend on i, so all automata are always in the

same column). The rows correspond to the alphabet Γ′, such that if the automaton

Ai is in row r, then the ith cell of the memory tape contains the rth symbol of Γ′

(for any fixed order of Γ′). We now define the transition relation δi for the automata

A1, . . . , Ak . Let qrc be the state in the cth column and the rth row. For c 6= i,
c ∈ {1, . . . , k − 1} we then define δi(q

r
c , (σ1, σ2, .)) = qrc+1, which means that the

automaton just notices that the head of the Turing machine moves to the right, but

since the head is not on the ith cell, the content of the tape cell (and therefore the

row) does not change. In the same manner we define δi(q
r
c , (σ1, σ2, /)) = qrc−1 and

δi(q
r
c , (σ1, σ2, ./)) = qrc . In case of c = i, the transitions will only be defined, if

the symbol that should be read by the Turing machine corresponds to the symbol the

automaton has stored in its state (its row). Since such a transition will possibly change

the symbol of the ith cell on the tape, it will also change the row of the automaton,

i. e., we define δ(qr1c , (σr1 , σr2 , .)) = qr2c+1 (assuming σr1 and σr2 to be the r1th and

r2th symbol in Γ’, respectively).

The initial state of all automata is q00 , which corresponds to an empty tape and the

head is pointing to cell 0, which we will refer to has the first cell. Moreover, the only

accepting state is q
|Γ′|
0 , which corresponds to a ξ on the tape cell of the automaton

and the head of the machine is pointing to the first cell (remember that M ′ has just
one accepting configuration in which the head points to the first cell and in which all

used cells contain ξ). Since these k automata only describe the tape content during

the computation, we need an extra automaton A0 that is keeping track of the cur-

rent state of the Turing machine and makes sure that a given transition is possible

at all. This automaton is based on the transition function of the Turing machine: It

has one state for every state of the Turing machine and the same initial and accept-

ing states. Furthermore, this automaton has the same state transitions as the Turing

machine (where the instructions of the Turing machine are described as symbols over

Π). Notice that we can assume that this automaton is deterministic, since the nonde-
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terminism of a Turing machine can be fully encoded in the nondeterministic guess of

writing a specific symbol to the tape, the successor state of the underlying automaton

can be defined deterministically (with respect to symbols of Π).

For correctness consider the case that M indeed halts on the empty string using at

most k memory cells. In this case an instruction sequence w exists such that the head

of M is never moved before the first or after the kth cell. This sequence is a word

accepted by all automata. The automaton corresponding to the transition function

of the Turing machine will accept, since the sequence induces a valid computation.

Furthermore, since the computation is valid, the Turing machine will never use too

many memory cells or do an invalid transition on any cell and, hence, the automata

corresponding to the tape cells will accept as well. On the other hand, an instruction

sequence that does not induces a valid computation of the Turing machine will lead

to at least one rejecting automaton. Either the Turing machine (and therefore A0) is

ordered to do a transition from a state it is not in (and A0 would reject); or the Turing

machine is ordered to read a symbol on the tape that is not there. This would be

noticed by one of the automata A1, . . . , Ak , which then rejects.

Example 11

Consider the following Turing machine, which uses k = 3 cells to accept the empty

string. The machine is already converted to a version that accepts by writing ξ on the

tape and moving the head back to the first used cell.

. . . t t t . . .

q0start q1 q2 q3

q4

t/ξ/. t/ξ/. t/ξ/ ./

ξ/ξ//ξ/ξ//
ξ/ξ/ ./

In order to check if the machine accepts the empty string, we can also test if the

following four automata all accept a common word over the constructed alphabet

Π = { (σ1, σ2, �) | σ1, σ2 ∈ {t, ξ}, � ∈ {., /, ./} }. The ? in a transition is just for

better readability and is a wildcard for any symbol at the corresponding transition.
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A0

q0start q1 q2 q3

q4

(t, ξ, .) (t, ξ, .) (t, ξ, ./)

(ξ, ξ, /)(ξ, ξ, /)
(ξ, ξ, ./)

A1

qt0start qt1 qt2

qξ0 qξ1 qξ2

(t, ξ, .)

(ξ,t, .)

(t,t, ./) (?, ?, ./) (?, ?, ./)

(ξ, ξ, ./) (?, ?, ./) (?, ?, ./)

(?, ?, .)

(?, ?, /)

(?, ?, /)

(?, ?, .)

(?, ?, /)

(?, ?, /)

(t,t, .)

(ξ, ξ, .)

(t, ξ, ./)(ξ,t, ./)

A2

qt0start qt1 qt2

qξ0 qξ1 qξ2

(?, ?, ./) (t,t, ./) (?, ?, ./)

(?, ?, ./) (ξ, ξ, ./) (?, ?, ./)

(t, ξ, ./)(ξ,t, ./)

(t, ξ, .)(t, ξ, /)

(ξ,t, .)(ξ,t, /)

(t,t, /) (t,t, .)

(?, ?, .) (?, ?, /)

(ξ, ξ, /) (ξ, ξ, .)

(?, ?, .) (?, ?, /)
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A3

qt0start qt1 qt2

qξ0 qξ1 qξ2

(?, ?, ./) (?, ?, ./) (t,t, ./)

(?, ?, ./) (?, ?, ./) (ξ, ξ, ./)

(t, ξ, ./) (ξ,t, ./)

(t,t, /)

(ξ, ξ, /)

(t, ξ, /)

(ξ,t, /)

(?, ?, .)

(?, ?, .)

(?, ?, .)

(?, ?, /)

(?, ?, .)

(?, ?, /)

A word accepted by all automata is:

w = (t, ξ, .)(t, ξ, .)(t, ξ, ./)(ξ, ξ, /)(ξ, ξ, /)(ξ, ξ, ./).

The same argument holds for pk-nfa-intersection, since a nondeterministic Turing

machine can simulate nondeterministic finite automata with the same time and space

bound as a deterministic Turing machine can simulate deterministic finte automata:

Corollary 12

pk-nfa-intersection is complete for XNL under paraAC0-reduction.

Often it is not necessary to consider languages with infinite size but only the ones

restricted to be finite. For example the set of allowed instructions in a programming

language is typically finite. Also block codes are typically finite and there recognition

could be done by a finite automata. These examples motivate us to study the problem

pk-fdfa-intersection, the same problem as above defined with automata which only

accept finite languages.

Theorem 13

The problem pk-fdfa-intersection is complete for XNLFPT via paraAC0-reduction.

Proof. First of all we can make the following observation: Since the languages are

finite, the transition graph of each automaton is acyclic, since a cycle would directly

imply that the accepted language has infinite size through the following fact:

Let us consider an automaton with a cyclic transition graph that accepts a word of the

form w = xyz. Without loss of generality, we can assume that y is the part of the

word that is accepted by a cycle in the transition graph. Therefore, the automaton

will also accept the word w′ = xyyz and, by induction, it will accept infinitely many

words.

If the transition graphs of the automata are acyclic, then the length of an accepted

word is bounded by q. The machine does therefore need only O(q) simulation steps

per automaton. Hence, we can use the algorithm from the last theorem with the
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modification that the Turing machine only guesses q symbols. If the machine has

guessed a word of size q and not all automata have accepted, then the machine can

reject. It follows that pk-fdfa-intersection lies in XNLFPT.

For a proof of hardness, we reduce from a more restricted version of the problem

p-bounded-ntm-halting.

Problem 14 (p-ntsc)
Instance: Given a nondeterministic Turing machine M and two unary encoded

integers t and s.
Parameter: s
Question: DoesM halt on the empty string in t steps using at most s cells?

The problem ps-ntsc is known to be complete for XNLFPT [26] and can be reduced

to pk-fdfa-intersection by the same reduction used in the last theorem. The only

difference this time is that the Turing machine has an explicit bound on its compu-

tation time (since t is unary encoded given with the input). This behavior can be

translated into automata which accept finite languages, since we do not have to con-

sider any possible computation, but only the ones that use at most t computational

steps. Therefore, the word that should be accepted by the automata has at most length

t and, thus, the language of the automata is finite.
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2.2 Parameterized by the Length of the Word

In the last section, we have parameterized the automata intersection problem with

k, the number of automata. Another reasonable parametrization is the parameter m,

the length of the word. This implies that we do not have to check words up to a

length of qk , but only up to a length ofm. This version will drop down further in the

complexity hierarchy and we will have to deal with circuit classes. We will prove in

this section that the problem pm-dfa-intersection lies in the intersection of paraWL

and XAC0.

In order to do so, we first present a lemma that describes how a family of circuits can

simulate an automaton. It is well known that the relation REG ⊆ NC1 holds [2], but

in this scenario the automata are fixed. We describe the more general case in which

the automaton is part of the input, i. e., as a decision problem we consider:

Problem 15 (dfa-simulation)
Instance: An automaton A = (Σ, Q, δ, q0, F ) with |Q| = q and |Σ| = s. Fur-

thermore, a word w ∈ Σ? with |w| = m is given.

Question: Does A accept w?

The following lemma describes an uniform family of circuits that can solve the prob-

lem. We renounce to classify the problem into a certain class, since we will use

the lemma later to study parameterized problems with different parameterizations,

i. e., selections of q, m, and s. Notice that the constructed family of circuits is a

NC1-family for fixed automata, i. e., for fixed q, and corresponds in this way to the

known REG ⊆ NC1 result.

Lemma 16

The simulation of a deterministic or nondeterministic automaton A with q states on
a word w of length m can be done by an AC-circuit of depth O(logm) and size

O
(
q2 · logm+ |Σ|

)
, i. e., the dfa-simulation-problem can be solved by a corre-

sponding family of circuits.

Proof. Let the input be w = σ1σ2 . . . σm. The circuit first computes for each symbol

σα inw a q×q binary matrixM0
α withM0

α[i][j] = 1 if, and only if, there is a transition
from qi to qj using σα. These matrices can be computed in constant depth using the

transition matrix of the automaton. Afterwards the circuit computes in a divide and

conquer manner for each two neighboring matricesMβ
α ,M

β
α+1 a new matrixMβ+1

α

by multiplying both of them. Such a new matrix describes the reachability of the

automaton if it handles both symbols σα and σα+1 together. Since the matrices are

binary, these multiplications can be done by an AC0-circuit: The entry at index (i, j)
is the pairwise “and” of the kth symbol in the ith row of the first matrix and the kth
symbol of the jth column of the second matrix; the results of all these operations

are merged by a big or-gate, i. e., Mβ+1
α [i][j] =

∨q
k=1(M

β
α [i][k] ∧Mβ

α+1[k][j]). The
circuit iterates this procedure for β ∈ {0, . . . , dlogme} and α ∈ {0, . . . ,m} until

only one matrix is left, which then describes the reachability of the automaton reading

the whole word. Since in each iteration the number of used matrices is halved, the

number of iterations is logm.
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Example 17

Consider the following automaton over Σ = {a, b}.

q0start q1 q2

b

a

a

b

a, b

To simulate this automaton on thewordw = baba, a circuit wouldmake the following

computation. The binary matrix is showed symbolically, a • indicates a 1, an empty

cell a 0.

•
•
•

•
•

•

•
•
•

•
•

•

•
•
•

•
•
•

•
•
•

δ b a b a

1

Theorem 18

The problem pm-dfa-intersection lies in paraWL ∩ XAC0.

Proof. We get membership in paraWL by the following parameterized logspace Turing

machine M : On the choice tape the word w is presented to the machine. This is

possible since m is the parameter and the size of w is bounded by m · dlogne. Now

M can simulate the automata one by one and just has to keep track of the current

automaton, its current state, and the current position in w. All of these values can be

stored within logarithmic space.

Now we focus on membership in XAC0. Since m is the parameter, the AC-circuit

of depth O(logm) from Lemma 16 is an XAC0-circuit. Therefore we can provide
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a family of XAC0-circuits that can solve the problem by considering every possible

input word in parallel (of which there are sm) and simulate each automaton on each

word. We can check if a word is accepted by all automata via a big and-gate. With

another big or-gate, we test if this is the case for any of the possible words. Clearly all

these operations are computable using XAC0-circuits.

For pm-nfa-intersection, the family of XAC0-circuits remains the same, however,

we have to replace paraWL by paraWNL, since we need nondeterminism to guess the

transitions of the nondeterministic automata.

Corollary 19

The problem pm-nfa-intersection lies in paraWNL ∩ XAC0.

Since pm-dfa-intersection is a member of both, paraWL and XAC0, we should not

invest to much hope for a completeness result, since this would imply AC0 = L due

to the following results.

Lemma 20

Let C1, C2 be two complexity classes with C1 ⊇ C2; furthermore, let L be a problem

that lies in paraWC1∩XC2. If L is complete for paraWC1 via a reduction that is weaker

than paraWC1 and than XC2, then we have C1 = C2.

Proof. Recall that all problems in C1 also lie in paraWC1 using a trivial parameterization.

By assumption L lies in the intersection of paraWC1 and XC2 and L is complete for

paraWC1 via a sufficiently weak reduction. Thus, we can reduce each problem in C1
to L and solve this within XC2. Because of the trivial parameterization the underlying

unparameterized problem can be solved within C2 and, hence, we get C1 = C2.

Conjecture 21

There are problems in XAC0 that are not in paraWL, i. e., XAC0 6⊆ paraWL.

We make this conjecture because for a problem instance w with parameterization κ,
the size of an XAC0-circuit is bounded by f(κ(w)) + |w|f(κ(w)) for a computable

function f . A paraWL-machine on the other hand has only f(κ(w)) + O(log |w|)
space and therefore, the machine can not even iterate over all gates of the circuit; thus

it remains unclear how such a machine could be able to simulate an XAC0-circuit.

We have studied the p-dfa-intersection problem parameterized by the number of

automata k and the word length m. One could ask for a version parameterized by

both, i. e., pk,m-dfa-intersection. This version is known to be W[1]-complete with

respect to parameterized time classes [13], however since m seems to be the stronger

parameter, we can conclude the same results as above. Hence, the version is prob-

ably not complete for paraWL or XAC0 since then these classes would be a subset

of W[1]. However, our result classifies the problem more detailed within the set of

W[1]-problems.

Corollary 22

The two automata problems pk,m-dfa-intersection and pk,m-nfa-intersection lie

in paraWL ∩ XAC0 and paraWNL ∩ XAC0, respectively.
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2.3 Parameterized by the Number of States

In addition to either k or m, another interesting parameter is q, the number of states

each automaton has. The resulting versions of the problem – pq-dfa-intersection
and pq,m-dfa-intersection – are both known to be W[2]-hard [13]. While we did

not improve the bound for the first version, new results in space complexity can be

obtained for the second one.

Theorem 23

Both problems, pq,m-dfa-intersection and pq,m-nfa-intersection, lie in the inter-

section of the complexity classes paraWNC1 and XAC0.

Proof. Lemma 16 provides us with an AC-circuit of depth O(logm) to simulate an

automaton. Recall how this circuit is designed: It consists of O(logm) layers and on

each layer a couple of q×q binary matrices are multiplied. Using AC-gates this results

in a circuit of depth O(logm), however, if we only allow NC-circuits, then the depth

of the circuit becomes O(log q · logm). Since both, q and m, are parameters, this

circuit is a paraNC1-circuit, because such a circuit has depth f(κ(w))+O(log |w|) on
an input w. Notice that this is not a paraAC0-circuit, since these are restricted to have

constant depth. In some sense, we have to use the higher classes only to allow a depth

with respect to the parameter, the logarithmic depth on the input size is thereby not

really used.

To solve the problems, a paraWNC1-circuit getsm ·dlogne choice bits as input. These
choice bits corresponds to the word w. Now, the circuit just has to check if all the

automata accept this word. This can be done by simulating all automata in parallel,

each with the paraNC1-circuit described above. Afterwards, a paraNC1-circuit can

check whether all the automata have accepted or not.

For membership in XAC0, notice that the circuit from Lemma 16 is in this case also a

XAC0 circuit and that the paraNC1-circuit – which checks if all automata accept – can

easily be replaced by a paraAC0-circuit as well. Furthermore, instead of using choice

bits for w, a circuit could hard-wire all sm possible words and check them in parallel

with the algorithm from above. An XAC0-circuit can do this, since for a fixedm this

number is polynomial and, thus, the circuit is huge enough to test all words in parallel.

Afterwards, one can test with a big or-gate if any of these words were accepted by

all automata. For fixed q and m, this circuit has constant depth and polynomial size,

hence it is an XAC0-circuit.

Instead of parameterizing the number of states together with the length of the word,

one could parameterize the number of states together with the number k of given au-

tomata. Interestingly, this parameterization implies a parameterized bound on more

parts of the input. In order to prove this, we need another common term of param-

eterized complexity, which we have not used yet: Kernelization. A kernelization of

a problem is another way to describe a parameterized computation; simply spoken is

a kernel of a problem instance a representation of this instance with a size depending

only on the parameter.
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Definition 24

Let (Q,κ) be a parameterized problem.We call a mapping K : Σ? → Σ? a kerneliza-

tion of (Q,κ) if it fulfills the following properties for all w ∈ Σ?:

. w ∈ Q if, and only if, K(w) ∈ Q;

. |K(w)| ≤ f(κ(w)) for a computable function f : Σ? → N.
We call K(w) a kernel of w.

Since the size of the kernel is bounded by the parameter, a kernelization implies a

parameterized algorithm: First compute the kernel and find a solution for the kernel

via “brute force” afterwards. It is well known that this technique implies a FPT, paraL,

paraTC0, or paraAC0 algorithm if the kernelK can be computed by a Turing machine

using polynomial time or logarithmic space, or by a family of TC0 or AC0 circuits,

respectively [26].

Lemma 25

The two problems pk,q-dfa-intersection and pk,q,m,s-dfa-intersection are com-

plexity theoretic equivalent with respect to an AC0-kernelization.

Proof. We will first describe, why m is bounded by the parameter, afterwards we

provide a AC0-kernelization to an instance, where s is bounded by the parameter as

well.

In these problems, we are searching for a word accepted by k automata, each with q
states. The system of all k automata has at most qk configurations and, hence, there is a
wordw of length qk that forces the system to take each reachable configuration at least

once. If a word exists that is accepted by all automata, then there is a configuration of

the system in which all automata accept. This accepting configuration can be reached

by a prefix w̃ of w in at most qk steps and, therefore,m is bounded by the parameter.

Let us now describe the AC0-kernelization to an instance where the size s of the

alphabetΣ is bounded by the parameter as well. We will call two symbols σ1, σ2 ∈ Σ
a pattern, if we have δ(qi, σ1) = qj if, and only if, δ(qi, σ2) = qj for any two states qi,
qj over all automata, i. e., σ1 and σ2 always yield to the same transitions. If two symbols

constitute a pattern, we can remove one of them together with all its transitions from

all automata. This leads to the question: How big can Σ be, before a pattern is forced

to exist?

An automaton for |Σ| = 1 can be viewed as a directed graph and there are 2(q
2) of such

graphs. For |Σ| > 1 the automaton can be seen as a graph with labeled multi-edges

that arises by overlaying some of the graphs from the case of |Σ| = 1. This overlay can
be described as follows: Take a |Σ| = 1 graph, label it with the corresponding symbol

and put all the transitions to the new graph; then take the next graph and repeat

the procedure. The resulting multigraph is the graph representing the automaton for

|Σ| > 1. Hence, for |Σ| > 2(q
2) a pattern has to exist in an automaton. Since we have

k automata, a pattern has to exist if we have |Σ| > 2(q
2)

k

. That means we can always

reduce the size of Σ to at most 2(q
2)

k

and, therefore, to be bounded by the parameter.

It remains to show that this kernelization can be done via AC0-circuits. The circuit

first checks if |Σ| ≤ 2(q
2)

k

holds and, if so, just does nothing. If, on the other hand,
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we have Σ > 2(q
2)

k

, then the circuit will check if we have 2(q
2)

k

< logn. If not, then
we get

22
(q2)

k

≥ n,

i. e., the instance size is bounded by functions of the parameter and, hence, the instance

is already a kernel. If we have 2(q
2)

k

< logn, then the circuit can check in parallel for

each pair of symbols if they build a pattern. To do so, the circuit checks for all pairs

of states in constant depth, if the two symbols appear together. If two symbols σ1 and
σ2 constitute a pattern, the circuit will only remove the one with the higher index.

The instance size was not reduced by the circuit until now, actually only a few symbols

are marked as remaining and others are not (the ones with higher indices in the pat-

terns). The circuit now has to compactify the instance, i. e., compute the index of the

remaining symbols in the new alphabet. This index of a symbol σ can be computed

by counting the number of remaining symbols before σ. This counting can be realized

by threshold gates: One with threshold 1, one with threshold 2, and so on. These gates
are wired to all the symbols with a smaller index and, thus, count how many of them

are remaining. The first gate for which the threshold is not reached leads to the index

of σ. Since at most 2(q
2)

k

symbols will remain and, furthermore, since 2(q
2)

k

< logn,
these threshold gates can be simulated with AC0-circuits [60]. Overall we obtain an

instance of pk,q-dfa-intersection in which m and s are bounded by the parameter

and, thus, an instance that is equivalent to pk,q,m,s-dfa-intersection.

With Lemma 25 we can provide the following theorem.

Theorem 26

The two problems pq,k-dfa-intersection and pq,k-nfa-intersection lie in paraAC0.

Proof. From Lemma 25 we know that a parameterization with q and k implies that

m and s are bounded by the parameter as well. Therefore a paraAC0-circuit can

hard-wire all O(sm) possible words and check in parallel, if one of these is accepted

by all automata. Let us consider one fixed word and describe how the circuit can check

in constant depth if it is accepted by an automaton; since q is a parameter, the circuit

can make this test for all automata in parallel. In order to do so, the circuit hard-wires

all qm possible state sequences for the considered word, this is possible since q and

m are parameters. Such a sequence qi1qi2 , . . . , qiq describes that the automaton is in

state qi1 after reading the first symbol, in state qi2 after reading the second symbol,

and so on. We will call a sequence a good sequence, if there is a valid computation

for the automaton on the word, traversing the states in the order of the sequence and

ending in an accepting state. The automaton accepts the word if, and only if, there is

a good sequence. Checking if a sequence is good can be done in constant depth AC:

The circuit just has to check if there is a transition between adjacent states together

with the corresponding symbol in w. Afterwards the circuit checks if the last state is

an accepting one, which is just a simple look up on the input.
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2.4 Parameterized by the Languages

Until now, we have analyzed the general version of the p-dfa-intersection problem

with different parameterizations. However, the problem is in practice often not so

general. The languages, for example, have often specific properties in specific appli-

cations. In this section, we will analyze such versions for one application. A negative

selection algorithm is a learning procedure that is trained only by negative examples.

The algorithm is designed after the model of the immune system in nature. In the

immune system, the organism uses T cells to protect itself from antigens. A T cell is a

special killer cell, which eliminates antigens that have a certain similarity to the surface

of the T cell. This similarity of the surfaces lets the T cell connect to the antigen. The

organism has to ensure that the T cells, indeed, eliminate only exogenous antigenes

and not endogenous ones. To do so, the organism trains the T cells as it matures. This

training is done in two steps: The organism starts by producing a huge amount of ran-

domly generated T cells; afterwards, it presents its endogenous antigenes to the T cells

and destroys each T cell that bounds to one of them. Thus, after this process only

T cells remain that do not attack endogenous antigenes, but rather recognize exoge-

nous antigens. This approach has some nice properties, for example, each organism of

a species has its own, unique set of T cells. This makes it hard for exogenous antigens

to adapt to all the T cells of a whole species.

In computer science, we can model this process as a learning scenario. Our learning

domain is X = Σn for some fixed alphabet Σ. Thus, the antigens are just strings

of length n over the given alphabet Σ. The considered concept class then is the set

Cδ = { cd ⊆ Σn | d ∈ Σn and for each w ∈ cd we have δ(w, d) ≤ r } where δ is

some predefined similarity measurement and r is some constant. One concept cd
represents all strings that are covered by a detector d, which is also just a string.

We can think of this setup as follows: d is a T cell and the encoding string represents

the surface of the cell. Then δ is the similarity function of the surface, which describes

if another cell would bind to d or not. The concept cd is the set of all strings w that

are similar enough to d, i. e., all antigenes that would be eliminated by the T cell.

Now a negative selection algorithm works as described for nature above. First draw

a set D ⊆ Cδ of detectors (T cells). Then present a sample set S ⊆ Σn of negative

examples (endogenous antigenes) to the algorithm and remove all the detectors d ∈ D
that cover at least one sample s ∈ S from D. The resulting set D′ ⊆ D is the final

classifier. Note, that in difference to a classical learning algorithm – in which we try to

find the correct target concept c ∈ C – in a negative selection algorithm we identify

the concepts c′ ∈ C that are for sure wrong. The whole process is illustrated in the

image on the next page.

A possible application for negative selection algorithms is spam detection. Here the

learning domain is the set of emails, and in the learning phase a few emails, which

are no spam, are presented to the algorithm. Afterwards, the algorithm detects emails

that are spam. For more details about applications or the whole field around negative

selection algorithms, we refer to the dissertation of Textor [68].
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di cdi negative sample final classifier

In this work, we are only interested in the application of the p-dfa-intersection
problem for negative selection algorithms. Clearly, a concept c ∈ C can be represented

by an automaton Ac that accepts all strings of the concept. To construct D′ and,
later, to classify with D′, one has to decide if a word w ∈ Σn is accepted by any

of the automata represented by D′. Thus, one has to compute the union of these

automata, which is through De Morgan the same as computing the intersection of

them. Moreover, in applications like spam detection or the simulation of the immune

system, it is often the case that the number of automata, the string length, or r is

noticeably smaller than the rest of the input. Thus, a parameterized point of view

lends itself.

Let us remark at this point, that the languages in our following problem definition do

not necessarily have to be represented as automata, indeed, we define the automata

just as the corresponding word d ∈ Σm which defines the concept. Nevertheless,

many practical implementations of negative selection algorithms are usually based on

automata [68, 54]. Since this will furthermore fit better to our previous notations,

we will continue to speak about automata and define the problem in a corresponding

manner:

Problem 27 (δdfa-intersection)
Instance: A set of k automata A1, . . . , Ak , each represented as a string di ∈ Σm

for an alphabet Σ with |Σ| = s. Each automaton Ai accepts all words

w with δ(w, di) ≤ r.
Question: Is there a word w ∈ Σm that is accepted by all automata, i. e., has

δ(di, w) ≤ r for each Ai?

The last thing that has to be defined is δ. Two frequently used functions are the

hamming distance and the contiguous distance [68, 54, 27]. The hamming distance

δH(w1, w2) is defined as the number of string positions in whichw1 andw2 differ, i. e.,

we define δH(w1, w2) = |{ i | w1[i] 6= w2[i] }|. The contiguous distance δC(w1, w2)
measures the similarity of w1 and w2 in local regions. Let x be the maximum number

of connected string positions in which w1 and w2 are equal. We then define the

contiguous functions as δC(w1, w2) = 2r − x, i. e., we will have δC(w1, w2) ≤ r if

there is an index iwithw1[i] = w2[i], w1[i+1] = w2[i+1], . . . , w1[i+r] = w2[i+r].

A first natural parameterization is k, the number of automata. This parameter is moti-

vated by the fact that there are often a lot more strings than detectors. For example in
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the immune system, there are plenty of endogenous antigens, but only a few T Cells

that have to be tested. In spam detection, we most likely have a lot of mails that

should not be marked as spam, and only a few criteria that mark a mail as spam.

Theorem 28

The problem pk-δCdfa-intersection lies in XNLFPT.

Proof. An XNLFPT Turing machine can solve the problem as follows: For each au-

tomaton Ai, the Turing machine initializes a counter. Then the machine iterates over

the string length and guesses nondeterministically one symbol after another. For each

automaton, the machine checks if the guessed symbol equals the symbol of the rep-

resentation string at the corresponding position; if this is the case, the machine incre-

ments the counter for this automaton. If the symbol does not match, the machine

resets the corresponding counter to zero. If one of the counters reaches r, the ma-

chine will freeze this counter, i. e., will stop to increase or reset this counter. When

the machine reaches the last symbol, it simply checks if each counter is r and accepts,

if this is the case. The machine needs only O(k · logn) storage bits and since k is a

parameter, this computation can be done by a XNLFPT machine.

We can modify the algorithm slightly to obtain a similar algorithm for the problem

pk-δHdfa-intersection. To do so, we count only the mismatches and do not reset

the counters at any point.

Corollary 29

The problem pk-δHdfa-intersection lies in XNLFPT.

The next parameter that we will consider ism, the length of the words that represent

the automata. There are some natural arguments for this parameter as well: In case

of the immune system, antigenes have a similar size, but the amount of antigenes can

differ quite a lot. In spam detection, the size of different emails compared with the

total amount of emails is usually very small. Thus, it makes sense to assume a small

m, while the instance size can be huge.

Theorem 30

The problems pm-δHdfa-intersection and pm-δCdfa-intersection both lie in the

class paraWAC0.

Proof. Let us first consider pm-δHdfa-intersection. A paraWAC0 circuit can solve

the problem as follows: On its choice gates, the description of the word w that has

hamming distance r to all the strings that corresponds to the automata is presented.

The circuit then can test for each string di, which represents the automaton Ai, if

di[j] 6= w[j] holds for all indices j ∈ {1, . . . ,m}. Afterwards, the circuit can count

with a threshold gate in how many positions the strings differ. If at most r positions
differ, then w would be accepted by Ai. The final result of the circuit will be com-

puted by a big and-gate, which checks if all the Ai would accept w. The resulting

circuit is a paraWAC0-circuit, since it has constant depth and all the gates, except

the threshold gate, are available within AC0. The threshold gate can be simulated by

26



an AC0-circuit as well, since if n is the instance size and we have r < logn, then
the counting is possible with hashing [60]. If r ≥ logn, then we have 2m ≥ n, since
m ≥ r. Hence, the whole instance has only parameterized size and, thus, the counting

can be “brute forced.”

The same argument also holds for pm-δCdfa-intersection as well. The difference is

that we in this case count the matches and not the mismatches. Furthermore, we do

not count over the whole string, but only in blocks of size r. But since the number

of such blocks is polynomial in the instance size, a paraWAC0 circuit can do this in

parallel.

When we talk about strings in biology or in emails, another parameter that comes to

mind is s, the size of the alphabet Σ. This is because in biology we generally have 4
DNA-bases and about 20Amino acids, which both build the corresponding alphabets.

In emails the alphabet can often be restricted to the Latin alphabet. Thus, in both cases

the alphabet is fixed and much smaller than the input size. If s is the parameter, the

algorithms used in the last theorem do not need the choice gates anymore. The reason

is, that only sm different strings exist and, if s and m are both parameters, a circuit

can test all these strings in parallel.

Corollary 31

Both, pm,s-δHdfa-intersection and pm,s-δCdfa-intersection, lie in paraAC0.

A new parameter, which could be used in case of p-δdfa-intersection, is r, the
threshold for the distance. This often makes sense, since the similarity between anti-

genes could be strongly restricted, and in the case of spam detection, marked emails

should not be to different from spam emails, in order to prevent the detector to mark

important messages as spam. However, r as a parameter for its own does not make to

much sense, but becomes interesting in combination with k.

Theorem 32

The problems pk,r-δHdfa-intersection and pk,m-δCdfa-intersection both lie in

paraNL.

Proof. Let us first consider pk,r-δCdfa-intersection. A paraNLTuring machine starts

solving the problem by initializing k counters. Afterwards, the machine guesses non-

deterministically one symbol after another and checks for each automaton, if the rep-

resenting string has this symbol at the corresponding index. If this is the case, the

machine increases the counter for this automaton; if it is not the case, the machine

resets the corresponding counter. If a counter reaches r at any point, the machine

will freeze the corresponding counter, i. e., the machine will not increase or reset this

counter anymore. If the machine has guessed all symbols, it simply checks if all coun-

ters have counted up to r and accepts if this is the case. For the k counters, the

machine needs at most O(k · log r) bits, but since k and r are both parameters, this

can be stored in the f(κ(x)) +O(log |x|) space of the Turing machine.

The same algorithm also works for pk,r-δHdfa-intersection; the only difference here
is that we count themismatches and not thematches. Moreover, in this case the Turing

machine will not reset the counters at any point.

27



In combination with k, a stronger parameter than r would be m. Stronger means

in this case, that the parameter m also implies that r is a parameter as well. For

the problems pk,m-δHdfa-intersection and pk,m-δCdfa-intersection, we can use

the same algorithms as in the last theorem. But since m is a parameter, we do not

need unlimited nondeterminism and, thus, the problems fall to paraβL. Together with

Theorem 30, we then can conclude the following corollary:

Corollary 33

The two problems pk,m-δHdfa-intersection and pk,m-δCdfa-intersection both lie

in paraβL ∩ paraWAC0.
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2.5 Complexity Map
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3 VERTEX ORDERING PROBLEMS

In this chapter we will consider a family of graph layout problems that are called ver-

tex ordering problems and which have received a lot of attention in the parameterized

complexity theory recently. In these problems the objective is to find an ordering π
of the vertices of a given graph that minimizes some functions, in other words to

find a layout with specific properties. The diversity of vertex ordering problems is

huge, with bandwidth, cutwidth and imbalance – to name just a few – we have

a selection of problems useful in very different applications like graph drawing and

protein engineering. All three problems are NP-complete and remain NP-hard even

in restricted versions. The bandwidth-problem remains NP-hard when restricted to

trees [33], cutwidth remains NP-hard for graphs with a maximum degree of 3 [40],

and imbalance remains NP-hard for planar graphs of maximum degree 6 and for

5-regular graphs [55]. Furthermore, these problems are some of the very few natu-

ral graph problems for which, parameterized by the treewidth, no FPT-algorithm is

known. Considering the natural parameter, the parameterized complexity of these

problems remained open for a long time and current research focuses on more struc-

tural parameterizations like the size of a minimum vertex-cover or the maximum

leaf number of the input graph [33, 31, 20]. The latest results considering the natural

parameter and parameterized time classes are quite technical and needed a lot of ef-

fort [55, 69]. Nevertheless, we will analyze these problems with the natural parameter

and with respect to parameterized space classes as well as with respect to nondeter-

ministic parameterized space classes that are restricted by a time bound. This will

allow us to consider the problems from a new perspective and lead to results that

split up the complexity of these problems more accurately. The results stand diagonal

to the current results that consider parameterized time classes.

3.1 Bandwidth

We start this chapter with the bandwidth problem, which has a couple of applica-

tions in the area of symmetric sparse and band matrices through its similarity to these

structures [15, 52]. The objective in the p-bandwidth problem is to place the vertices

of a given graph in a line, such that each edge “jumps” over as few vertices as possi-

ble. For a given ordering, the bandwidth of this ordering is the maximum number of

vertices skipped by an edge. The bandwidth bw(G) of a graph G is the minimum
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bandwidth over all possible orderings of the vertices of G. As a decision problem, we

define p-bandwidth as follows:

Problem 34 (p-bandwidth)
Instance: A graph G = (V,E) and a natural number k.
Parameter: k
Question: Is there an ordering π of the vertices of the graph, such that we have

|π(u)− π(v)| ≤ k for every edge (u, v)?

Example 35

Consider the following graph with 6 vertices and four of its possible layouts. Each

layout has a different bandwidth, which is shown next to the illustration.

2

3

4

5

π

Parameterized by the natural parameter k, the problem pk-bandwidth is in classical

terms known to be W[t]-hard for all t [13]. While this gives strong evidence that there

is no FPT-algorithm for the problem, it does not say much about parameterized space

classes, since some of them lie diagonal to the parameterized time classes. We will

prove that pk-bandwidth is solvable within XNLFPT, thus we consider time efficient,

nondeterministic Turing machines, which are allowed to use f(k) · logn space.

Theorem 36

The problem pk-bandwidth lies in XNLFPT.

Proof. We get membership with the following nondeterministic logspace Turing ma-

chine that can accept a slice of the problem. Our first observation is that the order

of connected components is not important for π, i. e., we can compute a permutation

of the vertices of each connected component and concatenate the results. Since the

computation of connected components is possible within a logarithmic space bound,

our Turing machine can compute this concatenation and we can safely assume that

we only have one connected component; let n be the number of vertices of this con-

nected component. Furthermore, any vertex can have at most 2k incident edges or

the instance has no solution at all, thus we will assume in the following algorithm that

the graph has maximum degree 2k.

The Turing machine will start by guessing the first 2k vertices and their order. It

will store all the 2k vertices and all edges incident to them (which are at most 4k2).
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We will call these vertices the current window of the layout, observed by the Turing

machine. The algorithm will make sure, that the layout before the window is valid

and will extend the layout vertex by vertex behind the window.

In each step of the algorithm, the Turing machine checks if the current window is

valid, for which it performs the following operations:

. check if no vertex appears twice in the window and reject otherwise;

. for each edge stored, check if both ends are part of the window and, if so, remove

the edge from the storage;

. check if no edge is stored for the first vertex of the window and reject otherwise.

If the window is valid, the layout up to this point is valid as well and all edges from

the first vertex are already considered. Now the machine will move the window by

one vertex: It removes the first vertex from the storage and guesses a new one at the

end of the window, also it adds all edges that are incident to the new vertex to the

storage. Now the Turing machine checks if the new window is valid and, if so, goes

ahead by moving the window further. It will repeat this steps until it has placed a

total of n vertices. At the end, the last check the machine will perform, is if the last

window is valid and that no edge is left in the storage. If this is the case the machine

will accept.

For correctness first notice that the machine always produces a layout of n vertices

in which the bandwidth is less or equal to k, since it keeps track of the edges. The

only thing we have to consider carefully is that the machine will notice a wrong guess,

which in this case means that it will not guess the same vertex twice. This is ensured by

the fact that the machine can move the window only if all edges of the first vertex are

considered (i. e., all the corresponding vertices are placed). If the machine would guess

the same vertex v twice, then there is a vertex w not guessed by the Turing machine

(since it places exactly n vertices). But since we consider a connected component, w
has an adjacent vertex w̃ placed by the Turing machine; furthermore, w̃ could leave

the window only if w was placed: A contradiction.

33



3.2 Cutwidth

In the cutwidth problem, we are given a graph G and are asked to find an ordering

of the vertices such that the maximum number of edges that is intersected by a line

inserted between two consecutive vertices is as small as possible. The maximum

number of such edges at any point of the layout is called the cutwidth of the layout. The

cutwidth cw(G) of the graph G is the minimum cutwidth over all possible orderings

of the vertices of G. As a decision problem, we define more formally:

Problem 37 (p-cutwidth)
Instance: A graph G = (V,E) and a natural number k.
Parameter: k
Question: Is there an ordering π of V , such that for every i ∈ {1, . . . , |V |−1} and

the following family of functions:

fi(x, y) =

{
1 if x ≤ i and y > i,

0 else;

we have ∑
(u,v)∈E

fi
(
π(u), π(v)

)
≤ k?

Example 38

Consider the following graph on 7 vertices and two of its layouts, one with cutwidth

4 and one with cutwidth 2.

4

2

π

Fellows et al. summarized the wide field of applications of the cutwidth problem

in [33], including circuit design [1, 57], protein engineering [4], network reliability [47],

graph drawing algorithms [59], information retrieval [8] and even a tsp-algorithm [43].

A fixed-parameter linear-time algorithm for cutwidth was recently presented by

Thilikos, Serna, and Bodlaender [69]. However, in this section we will analyze the

complexity of pk-cutwidth with respect to parameterized space complexity: First

we present an XNLFPT-algorithm similar to the one for pk-bandwidth, afterwards

we will use the immersion-characterization of cutwidth to prove XLmembership as

well. It may seem weird at the first look that we prove membership in XNLFPT and

XL, since one could imagine that XNLFPT is a class above XL, but this is not necessarily

the case. As far as we known, XNLFPT and XL lie diagonal to each other. The reason
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is that although an XNLFPT machine is allowed to use nondeterminism, it is also re-

stricted by a time bound. We can think of XNLFPT as time efficient, nondeterministic

XL and since we consider these three resources (time, space, and nondeterminism),

the relationship between these classes is unknown.

Theorem 39

The problem pk-cutwidth can be decided within XNLFPT.

Proof. We will prove membership with an algorithm similar to the one used in Theo-

rem 36. First notice that it is, like in the case of pk-bandwidth, sufficient to consider

only connected components with a maximum degree of 2k.

The Turing machine will, like in Theorem 36, start by guessing a window of 2k ver-

tices. It will store the vertices of the window and all incident edges. Now it will check

if this window is valid, which is slightly different as in the last algorithm:

. check if no vertex appears twice in the window and reject otherwise;

. for every edge stored, check if both ends are part of the window and, if so,

remove the edge from the storage;

. check if the cuts inside the window are valid, i. e., count the edges and consider

also the still stored edges (which move from the start vertex to a vertex behind

the window and thus can be used to compute the cuts).

If the window is valid and the graph has a cutwidth of at most k, then there are at

most k edges that lead from the window to a not yet placed vertex, since otherwise

their would be a cut greater than k behind the last vertex of the window. Thus, there

is a vertex inside the window for which there is no stored edge left. In order to move

the window, the Turing machine will remove such a vertex and guess a new one at

the end of the window.

The machine will repeat this procedure until it has placed exactly n vertices and it

will accept if, and only if, at each step the window is valid and there is no stored edge

left at the end. The proof of correctness is similar to the one in Theorem 36.

In the pk-bandwidth-problem, XNLFPT-membership was everything what we were

able to achieve. For pk-cutwidth some more tools are available, which will allow us

to consider the class XL as well. Thus, we will drop the nondeterminism and the time

bound at the same time. The result is based on a framework of meta-theorems and is

non-constructive, hence we do not know the algorithm, but we can prove that there is

one. In the following, we will first provide a short introduction to the framework of

used meta-theorems, afterwards we will conclude the existence of an XL algorithm

for pk-cutwidth.
Minors and Immersions. A special way to look at graph theory is to describe a partial

order over a family F of graphs. Of great importance are the minor relation 4m and

the immersion relation 4i between two graphs. We will only give a short overview,

for more details consult the survey by Lovázs [56] or the textbook by Courcelle and

Engelfriet [18].
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Definition 40

A graphH is called a minor of a graphG, denoted byH 4mG, if an isomorphic graph

of H can be obtained from G by applying a finite sequence of the following three

operations:

. removing a vertex;

. removing an edge;

. contracting an edge, i. e., removing the edge and merging the two incident ver-

tices.

Example 41

The leftmost graph is a minor of the rightmost one. We can see this by applying from

right to left the following operations: Contract the dashed edges, delete the dashed

edges, delete the dotted vertices.

4m 4m 4m

In a similar way the immersion relation is defined:

Definition 42

A graph H is called immersed in G, denoted by H 4iG, if an isomorphic graph of H
can be obtained fromG by applying a finite sequence of the following three operations:

. removing a vertex;

. removing an edge;

. lifting two adjacent edges, i. e., replacing two edges {a, b}, {b, c} by {a, c}.

Example 43

The left graph is a subgraph of the graph obtained from the right one by lifting the

dashed edges. Thus, the left graph is immersed into the right graph.

4i
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The strength of these relations lies in the following theorems, conjectured by Wag-

ner [71] and proved by Robertson and Seymour in a series of over twenty papers [66],

which show that these relations build well-quasi-orderings for families of graphs. A

detailed overview over the concept of well-quasi-ordering can be found in a survey

by Kruskal [50]. However, for an understanding of this work a look at the following

definition is sufficient.

Definition 44

A relation 4 is a quasi-ordering of a setX , if it is reflexive and transitive. The relation

is a well-quasi-ordering of X if it is a quasi-ordering and if each strictly decreasing

sequence is finite and if each set of pairwise incompatible elements is finite as well.

Theorem 45 (Graph Minor Theorem)

Each family F of graphs is well-quasi-ordered by the minor relation. �

In other words: Each family F of graphs contains a finite set of minimum graphs

with respect to the minor relation. Recently Robertson and Seymour proved that the

graph minor theorem still holds if the minor relation is replaced by the immersion

relation [66].

Theorem 46 (Graph Immersion Theorem)

Each family F of graphs is well-quasi-ordered by the immersion relation. �

To see the enormous impact of these theorems, we need another definition first.

Definition 47

Let G, H be two graphs and F be a family of graphs with G ∈ F . We call F
minor-closed (immersion-closed) if H 4mG or H 4iG implies H ∈ F .

We are now able to connect the last definition with the previous theorems to obtain

a tool that allows us to describe a family of graphs by a finite set of minors or immer-

sions, which we will call the minor-characterization or immersion-characterization of

the family. Let G be the set of all graphs and F a minor-closed (immersion-closed)

family. From Theorem 45 (46) we know that the family G \ F has a finite set of

minimum minors (immersions), called the obstruction set of F . We will denote the

obstruction set of a family F with respect to the minor or immersion relation with

osm(F) or osi(F), respectively.

Corollary 48

For a graph G and a family of graphs F we have G ∈ F if, and only if, there is no

graph H ∈ osm(F) or H ∈ osi(F) with H 4mG or H 4iG, respectively.

Hence, we can describe a minor-closed or immersion-closed family of graphs by its

finite obstruction set, i. e., every minor-closed (immersion-closed) family of graphs is

well-defined by a finite set of forbidden minors (immersions).

Example 49

From the definition of the minor relation we immediately get, that the family of cycle

free graphs is defined by the obstruction set including only the graph . Wagners

Theorem, a restricted version of Theorem 45, tells us that the family of planar graphs
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is defined by the obstruction set containing the complete graph on 5 vertices and the

complete bipartite graph on 4 vertices [71]:

Another example is the family of series-parallel graphs with the obstruction set that

only contains the complete graph on 4 vertices [22]. A little more complex is the

family of graphs with treewidth at most 3. Such graphs are represented by the following

obstruction set [7]:

Furthermore, Robertson and Seymour gave an O
(
|V (G)|3

)
algorithm, which decides

for a fixed graphH whetherH 4mG holds or not [65]. This leads us to the following

corollary:

Corollary 50

Every graph property describable through a minor-closed graph family is decidable in

polynomial time.

Unfortunately, these results are non-constructive, i. e., we do not know the obstruction

set for all families of graphs and, even worse, Fellows and Langston proved that these

obstruction sets can not be computed [30]. However, from an algorithmic point of

view this may be disappointing, but from the aspect of complexity theory we are sat-

isfied by the pure existence of such an algorithm. And we can do even more: These

relations can be described with second order logic, which will allow us to use further

meta theorems. For more details about the minor relation and its logical representa-

tion consult the textbook of Courcelle and Engelfriet [18]. We refer to the original

paper by Robertson and Seymour for more details about the characterization of the

immersion relation [66] and to the textbook by Flum and Grohe for an introduction

to mso-logic [35].
Such mso-characterisations become useful in combination with the following meta

theorems and their logspace variants.

Theorems of Bodlaender and Courcelle. The Theorem of Bodlaender provides us with

a linear time algorithm to compute the tree decomposition of a graph with bounded

treewidth [6]. Thus, the Theorem of Courcelle yields to a linear time algorithm to

evaluate monadic second order formulas over graphs with bounded treewidth [17].

Elberfeld, Jacoby, and Tantau showed that in both theorems “linear time” can be re-

placed by “logarithmic space” [23]. We therefore get the following corollary:
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Corollary 51

Each graph property that is describable by a minor-closed or immersion-closed graph

family can be tested in linear time or in logarithmic space on graphs with bounded

treewidth.

We are now ready to connect Corollary 51 with the pk-cutwidth problem. To do so,

we need a result from Fellows and Langston, who proved an immersion-characterization

of cutwidth [32]. Furthermore, Thilikos, Serna, and Bodlaender showed that for each

graphGwe have cw(G) ≥ pw(G) ≥ tw(G) [69, 5]. This implies that a “yes”-instance

of pk-cutwidth has bounded treewidth. With these facts taken together with Corol-

lary 51 from above, we can conclude the existence of a (non-uniform) XL-algorithm

for pk-cutwidth.

Corollary 52

There is a XLNU-algorithm for pk-cutwidth.

Corollary 53

The problem pk-cutwidth lies in XNLFPT ∩ XLNU.

3.3 Imbalance

At the end of this chapter, we will consider the very natural problem imbalance,
which was introduced by Biedl et al. [3]: Given an undirected graph, our task is to de-

termine a permutation of the vertices such that each vertex is as “balanced” as possible,

i. e., has equally many neighbors one the left and right side. For a graph G = (V,E)
and an ordering π of V , we denote the “left” and “right neighborhood” of v ∈ V by

Lπ(v) and Rπ(v), respectively. Now, we can define the balance of a vertex v as

balance(v) = |Lπ(v) − Rπ(v)|; moreover, the imbalance of a graph is defined as

ib(G) =
∑

v∈V balance(v). Finally, the p-imbalance problem can be formulated as

follows:

Problem 54 (p-imbalance)
Instance: A graph G = (V,E) and a natural number k.
Parameter: k
Question: Is there an ordering π of V , such that we have ib(G) ≤ k?

Example 55

Below, a graph and its layout of imbalance 4 are illustrated. The numbers below the

vertices represent the balance of each vertex with respect to π.

2 0 0 1 1

π

The p-imbalance problem has a lot of applications in many graph drawing algo-

rithms [44, 45, 61, 73, 74] and has a strong connection to the cleaning problem [37].
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First complexity analysis for imbalance were made by Kará et al. [46]; Lokshtanov,

Misra, and Saurabh later presented a FPT-algorithm [55]. Like in the case of bandwidth
and cutwidth, we will present an XNLFPT algorithm for pk-imbalance. For the

XNLFPT algorithm we need a result from Lokshtanov et al. [55], which connects the

cutwidth and imbalance of a graph:

tw(G) ≤ pw(G) ≤ cw(G) ≤ ib(G)/2.

A direct consequence is that bounded imbalance implies bounded maximum degree,

i. e., a graph with imbalance k can only have a degree of at most k. This is because a
graph with cutwidth at most k has a maximum degree of at most 2k.

Theorem 56

The problem pk-imbalance lies in XNLFPT.

Proof. With the notes from above, we can reject if the graph has degree greater than

k and, thus, we can assume that the graph has degree at most k. Furthermore, with

the same argumentation as in Theorem 36 and Theorem 39, we can assume that the

graph is connected as well.

On input of a graph G, an XNLFPT Turing machine can guess the first k vertices of

the layout and store these vertices together with the corresponding edges (which are

at most k2). As in the Theorems 36 and 39, we will call these vertices the window.

There are always three kind of edges for the window observed by the Turing ma-

chine: Edges inside the window ( ), edges with one end in the window that

are stored ( ), edges with one end in the window that are not stored ( ).

With respect to one vertex, the direction (left or

right) of edges inside the window is clear, for the

other two kinds we define it as follows: Is the

edge still stored, then it points behind the win-

dow and thus is right of the vertex inside the win-

dow; if the edge is not stored, the other end lies before the window and thus, is left of

the vertex. The setup is illustrated in the image at the right site; the Turing machine

has all information needed to compute balance( ) = 2.

The Turing machine now computes a sequence of validation steps. Within each val-

idation step, the Turing machine can compute the balance of each vertex inside the

window with the stored information and the graph representation. It will add this

balance to a global counter and reject if this counter becomes greater than k at any

point. At the end of a validation step, the Turing machine does three things: First

it removes all edges with both endpoints inside the window from the storage, then

it removes vertices for which we have no stored edges left (these are not needed for

any further computations), and it will add one vertex and its corresponding edges

nondeterministically to the window. Another validation step is following afterwards.

If the Turing machine has loaded exactly n vertices to the window, has no stored edges

left and if the global counter is smaller or equal to k, then the machine will accept;

otherwise it will reject. Since the machine can remove vertices from the window only
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if all the edges of this vertex are covered, i. e., the corresponding vertices are placed

in the window as well, we can be sure that each vertex will be placed exactly once

(otherwise there would be an edge left in the storage at the end).

Let us now consider why this is possible within logarithmic space. This is due to the

following fact: There are at most k vertices that add more edges to the storage as they

remove. This is because such a vertex always automatically increases the imbalance of

the graph by at least 1. Thus, the machine will never have to store more than k2 + k
edges and therefore not more than k2 + k vertices.

3.4 Complexity Map

pk-bandwidth
pk-cutwidth
pk-imbalance

FPT

XNLFPT

XLNU

Membership
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4 COLORED REACHABILITY PROBLEMS

The present chapter will take us on a long journey ranging from secret agent missions

to modern energy problems. On this journey we will face known problems and com-

plexity classes, and encounter new complexity classes and concepts. The journey is

motivated by a simple observation: There are some natural problems that naturally

generalize a graph problem to a parallel version of this problem on multiple graphs.

An example for such a problem is the reachability problem in big cities.

Let us say a student wants to travel from his home s to the university t. In the city

in which the student lives exists a couple of public traffic transportations, namely

two different bus lines by different companies and a tram. Besides that, the city has a

couple of bicycle pathways. Consider the vertices of the following graphs as important

waypoints in the city, the four described traffic nets (from left to right: Bus 1, Bus 2,

Tram, and Biscyle) may look like the ones in the following figure:

t

s

t

s

t

s

t

s

Unfortunately, the student has not enough money to buy two bus tickets, a tram

ticket, and a new bicycle. His little student salary is only sufficient for two of these

items. In order to resolve his problem, the student has to solve the graph reachability

problem in multiple graphs at the same time. In other words, he has to ask himself: “Is

it possible to overlay two of the above visualized graphs, such that there is an s-t-path
in the result?” In this case the student is lucky and there is indeed a solution, can you

guess which one?

A way to formalize such problems is to consider a single graph with colored edges. For

t

s

the example from above we could use the following

color scheme: Bus 1, Bus 2, Tram, and Bicycle. The

problem then becomes to decide if it is possible to se-

lect two colors such that there is an s-t-path in the

right graph, using only edges colored by these two

colors. This version of the problem is also known

as p-colored-reachability and was already studied by Elberfeld, Stockhusen, and
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Tantau [26]. Besides its reference to some natural problems, a nice property of this

problem is its close relation to the computanional model of a parameterized logspace

Turing machine with bounded nondeterminism. We will generalize this problem to

a class of problems that we call color selection problems, in which the setup is like

above, but one must not necessarily solve a reachability problem. A logical conse-

quence of considering color selection problems is to consider color deletion problems

as well, which we will also do in this chapter. One may think that these two classes of

problems are the same, since instead of selecting k colors out of n, one always could

simply delete n− k colors and vice versa, but this is not possible in a trivial way if k
is the parameter. Thus, the two problem classes are parameterized dual to each other

and, hence, both are interesting.

4.1 Color Selection Reachability Problems

Wewill start this chapter with different color selection problems, in which the objective

is s-t-reachability. Besides the case of colored edges, which we have mentioned in the

introduction, we will later in this section also consider versions with colored vertices.

However, we start with a formal definition of the version with colored edges:

Problem 57 (p-colored-edge-selection-ϕ)
Instance: A graph G = (V,E) and a multi-coloring of the edges c : E → 2C ,

where 2C is the power set of the set of possible colors of which there

are at most |V | different. Also a natural number k is given.

Parameter: k
Question: Is there a selection of k colors such that the graph obtained from G by

removing all edges that have none of the k colors has the graph property

ϕ?

Two interesting variants of the introduced problem are the natural color selection

problems p-colored1-edge-selection-ϕ and p-coloredF -edge-selection-ϕ. In

the first problem each edge is just colored with only one color as in the example

from the introduction; in the second problem we are given k sets of colors instead

of n colors and then have to select exactly one color from each set. The setup of

the second version can be thought of as a set of color pools – for example a pool of

different shades of red and one with different shades of blue and so on – then the

task is to select one shade of each color in order to obtain a graph with property ϕ.
Formally we define these versions on the next page.
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Problem 58 (p-colored1-edge-selection-ϕ)
Instance: An undirected graph G = (V,E) with an edge coloring c : E → C ,

where C is a set of at most |V | colors. Also a natural number k is given.

Parameter: k
Question: Is there a selection of k colors such that the subgraph of G that contains

only edges of these colors has the graph property ϕ?

Problem 59 (p-coloredF -edge-selection-ϕ)
Instance: An undirected graph G = (V,E) with a multi-coloring c : E → 2C on

the edges (2C is the power set of the set C of colors). Furthermore, a

family F = {C1, . . . , Ck} of pairwise disjoint color sets with the prop-

erty
⋃k

i=1Ci = C is given.

Parameter: k
Question: Is it possible to select exactly one color of each of the k color sets such

that the subgraph of G that contains only edges of these colors has the

graph property ϕ?

Example 60

As example we have a look at the problem considered by Elberfeld, Stockhusen, and

Tantau: pk-colored-edge-selection-ureach [25]. In this problem we are given an

undirected graph with multi-colored edges and two vertices s and t. Such a graph is

shown on the left side in the image below.

s

t

s

t

In this graph it is not possible to select one color in order to obtain a path from s to
t. However, it is possible to select two colors to do so, namely: Yellow and red. The

solution is shown in the right graph.

Elberfeld, Stockhusen, and Tantau showed, that the very natural problems obtained by

setting ϕ to the standard problems reach, dag-reach, cycle or to the logspace com-

plete problems ureach, tree, ucycle are complete for paraWNL or paraWL, respec-

tively [26]. They generalized this concept, such that the resulting versions are complete

for any paraW-class, if ϕ is complete for the underlying class under certain conditions.

Moreover, they also showed that in case of reach and ureach, these results also hold

for p-colored1-edge-selection-ϕ and p-coloredF -edge-selection-ϕ.
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If we talk about color selection problems with colored edges, a natural further step is

to also consider variants with colored vertices. In this scenario one could think of a

company buying railway stations instead of the railway tracks between the stations. A

natural example is the problem p-colored1-vertex-selection-ureach, which will

be very useful in the present chapter.

Problem 61 (p-colored1-vertex-selection-ureach)
Instance: An undirected graphG = (V,E) together with a coloring on the vertices

c : V → {1, . . . , |V |}, two marked vertices s, t with s, t ∈ V , and a

natural number k.
Parameter: k
Question: Is there a selection of k colors such that inG exists an s-t-path that only

uses vertices of these colors?

Example 62
In the pk-colored1-vertex-selection-ureach-problem, we are given a single

s

t

colored graph, like the one on the right side.

The question then is, if we can select some

colors such that we can walk from s to t by
just using vertices of the chosen colors. In

this graph, it is possible to traverse from s
to t by using only , , and vertices. As

an alternative, one could also use vertices

instead of the ones. However, it is not possible to use fewer colors, for instance

and vertices are always required, but not enough by itself.

Similar to the edge-selection version, the variant of the problem with colored vertices

is complete for paraWL, as we will see in the following theorem.

Theorem 63

The problem pk-colored1-vertex-selection-ureach is complete for paraWL under

paraAC0-reduction.

Proof. For membership consider the following Turing machine, which works in two

phases. The first phase is preprocessing, here the Turing machine gets the description

of the k colors in form of O(k · log |x|) nondeterministic bits on its choice tape. The

machine deletes all vertices that are not colored with one of these colors. In the

second phase the Turing machine tests s-t-reachability on the remaining graph with

the logspace algorithm from Reingold [63].

For completeness we will reduce from pk-colored1-edge-selection-ureach, the
version of pk-colored-edge-selection-ureach in which each edge is colored with

exactly one color. This version of the problem is still paraWL-complete [26]. For a

given graph, we replace each edge by a new vertex colored by the color of the

edge, and two new edges . Moreover, we color all the original vertices with

a new color and set the new parameter to k + 1. Clearly, the new color has to be

selected since otherwise the path could not even include s and t. Each selection of

the remaining k colors in the new graph corresponds to the same color selection in
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the old graph. Thus, a path in the new graph, visiting only vertices of these colors,

corresponds to a path in the old graph, visiting only edges of these colors.

A natural question from the studies above is what happens if we replace “selection”

with “deletion”? For logspace properties, problems of this kind seem to be both, very

natural and good candidates to be paraWL complete. Thus, we will investigate such

problems in the following section.

4.2 Color Deletion Reachability Problems

There are different possible ways to define a color deletion problem. All of them, simi-

lar to the color selection problems, are based on undirected graphs with a multi-coloring

on the edges. The objective in these problems is to choose k colors in order to obtain

a graph with some specific properties. The question we face is, whether we delete

all edges having one of the k colors or we delete all edges having all the k colors (and

maybe more). While the first version may look a little bit more natural, the second

variant has a closer relation to the color selection problems which we have already con-

sidered. We will analyze candidates for both versions in this section. However, we

will start with an investigation of the variant in which we only delete edges that are

colored by all k colors.

Problem 64 (p-colored-edge-deletion-ureach)
Instance: An undirected graph G = (V,E) and a multi-coloring c : E → 2C of

the edges (2C is the power set of the set C of colors). Also two marked

vertices s, t with s, t ∈ V and a natural number k.
Parameter: k
Question: Is there a set S ⊆ C with |S| = k such that in the graph obtained from

G by removing all edges ewith S ⊆ c(e) there is a path from s to t?

Note again that we, in contrast to the classical p-colored-edge-selection-ϕ prob-

lems, delete only edges that are colored with all k colors and not the ones colored with

at least one of the colors.

Example 65

Consider the following path graph s t. Any selection of two

colors from {blue, red, yellow} will remove one of the edges of the path and, thus,

will remove the possibility to walk from s to t. However, if we modify the graph to

be s t, then every selection of two colors will still lead to a graph

with a path between s and t.

Theorem 66

The problem pk-colored-edge-deletion-ureach is paraWL-complete with respect

to paraAC0-reduction.

Proof. We obtain membership with a Turing machine that works similar to the one

used in the proof of Theorem 63. In the same way as mentioned in this Theorem, the
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machine gets the description of k colors on its choice tape. Afterwards, the machine

deletes all edges that are colored with at least these k guessed colors. Finally, the

Turing machine solves the problem by computing s-t-reachability with Reingold’s

algorithm [63].

To prove hardness, we reduce from pk-colored-edge-selection-ureach, a prob-

lem known to be complete for paraWL [26]. Let therefore G = (V,E), c, k be an

instance of pk-colored-edge-selection-ureach. LetG′ be the color complementary
graph of G. The color complementary graph

for a multi-colored graph is the graph that

we obtain if we split the original graph into

multiple graphs (one for each color), build

the complementary graphs of these graphs,

and merge them back afterwards. See the

figure on the right side for an illustration.

The obtained graph is the new instance for

pk-colored-edge-deletion-ureach. Let us

now consider the case that it is possible to se-

lect k colors c1, . . . , ck such that in G exists an

s-t-path on which each edge has one of these

colors. Since each edge of this path has one of

the k colors in G, each of the edges misses at

least one of these colors in G′. Hence, delet-

ing edges with at least all colors c1, . . . , ck inG′

results in the same s-t-path as selecting the corresponding edges in G. Let us now

consider the case that it is not possible to select k colors inG in order to obtain a path

from s to t. Then for every selection of k colors and for every path between s and t
exists at least one edge e that does not have one of the k colors. Therefore, e has all k
colors in G′ and, hence, will be deleted for this selection of k colors. Hence, it is not

possible to delete k colors in order to obtain s-t-reachability in G′.

In the pk-colored-edge-deletion-ureach problem, each edge can be colored by

several colors and for the deletion an edge has to be colored by all the selected col-

ors. This may seem rather unnatural and a version where each edge has exactly

one color could be more interesting. In such a version the selection of some colors

implies a concrete selection of forbidden edges. We will denote this version with

pk-colored1-edge-deletion-ureach.

Problem 67 (p-colored1-edge-deletion-ureach)
Instance: An undirected graphG = (V,E) and a coloring of the edges c : E → C

as well as an integer k > 0 and two vertices s, t ∈ V .

Parameter: k
Question: Is there a selection of k colors such that the graph obtained from G by

removing all edges having one of these colors has an s-t-path?

This version has not such a close relation to pk-colored-edge-selection-ureach,
however, it has a close relation to pk-coloredF -edge-selection-ureach.
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Theorem 68

The problem pk-colored1-edge-deletion-ureach is complete for paraWLwith re-

spect to paraAC0-reduction.

Proof. Membership works similar as in the proofs of Theorem 63 and Theorem 66. A

corresponding Turing machine gets the description of k colors as O(k · log |x|) non-
deterministic bits on its choice tape. In a first phase the machine deletes all edges

that are colored with one of the k guessed colors. Afterwards the machine computes

s-t-reachability with the algorithm from Reingold in a second phase [63].

We reduce from pk-coloredF -edge-selection-ureach in order to prove hardness.

Let therefore G = (V,E), F = {C1, . . . , Ck} be an instance of this problem. We

replace each edge {u, v} ∈ E by a couple of paths, more precisely by one path for

each color ci the edge has. Such a path has one edge for each color in the color pool

Ci of ci, except for ci itself. Thus, the path corresponding to ci has |Ci|−1 edges and

these edges are colored with the colors of Ci \ {ci} (each color is used exactly once

for a unique edge). If we have for example C1 = { , , }, C2 = { , , }, and
the edge , we would construct .

A deletion of a color in the new graph corresponds to a selection of the same color

in the original graph. Let an edge be colored by ci in the original graph and, thus, be

usable for the s-t-path if ci is selected. This edge is replaced by a path in the new

graph that does not include an edge colored by ci and, hence, will be usable if ci is
deleted. We now have to enforce that a solution deletes exactly one color of each

of the original color pools. In order to do so, we add a new start vertex s′ with a

path from s′ to s. This path has two edges between two neighboring vertices colored

with two different colors of the same color pool. In this fashion all combinations of

colors of the same color pool are encoded to the path and, thus, the deletion of two

colors of the same color pool will destroy the path. Since we are furthermore forced

to delete k colors, it follows that a solution will delete exactly one color of each of

the original color pools. For the color pools C1 and C2 from above the path would

be: s′ s.

This reduction can be performed by a paraAC0-circuit since the replacement of a

single edge introduces at most k paths of length at most |Ci| ≤ n and, thus, at most

k · n vertices. Furthermore, for the path from s′ to s there are at most |Ci|2 color

combinations for each pool and, hence, the length of this path is bounded by k·n2.

We can adapt these results to versions defined on colored vertices. In these versions

membership works in the same way, the only difference is that the corresponding Tur-

ing machine does not delete certain edges, but certain vertices. For hardness, we can

reduce the versions defined on colored edges to the versions defined on colored ver-

tices using the tools of the proof of Theorem 63. Thus, we get the following corollaries

for the problems that are defined in consistent manner to the previous problems.

49



Corollary 69

The problem pk-colored-vertex-deletion-ureach is complete for paraWL with

respect to paraAC0-reduction.

Corollary 70

The problem pk-colored1-vertex-deletion-ureach is complete for paraWL with

respect to paraAC0-reduction.

Finally, let us consider a deletion problemwithout colors. Such a version is interesting,

since it is quite natural to ask if one could reduce the size of a graph while preserving

reachability. Consider for example a rail network and the question if it is possible to

reduce the number of rail connections while still covering the whole region.

Problem 71 (p-vertex-deletion-ureach)
Instance: An undirected graph G = (V,E), two marked vertices s, t ∈ V , and a

natural number k.
Parameter: k
Question: Is it possible to delete k vertices from G such that there is still an

s-t-path?

Interestingly, in contrast to the problems previously studied, the complexity of this

problem drops dramatically in the complexity hierarchy. To prove this, we first need

a helpful lemma, which allows the computation of an iterative depth first search in

certain graphs using a paraL-machine.

Lemma 72

Given a parameterized graph problem (Q,κ) and an instance G = (V,E) of the

problem. If we have δ(G) ≤ f(κ(G)) and |{ v | v ∈ V and δ(v) > 2 }| ≤ f(κ(G))
for a computable function f : N → N, then a Turing machine can compute an iterative

depth first search starting on any vertex s ∈ V using f(κ(G)) +O(log |G|) space.

Proof. We will first prove that the Turing machine can compute a bounded depth first

search for fixed depth d starting by s using its f(k) storage. In order to do so, the

machine indexes the high degree vertices with respect to the natural ordering of the

vertices in the input. Furthermore, the machine stores for each of these vertices if it

was already visited in the current path of the depth first search and, if so, which neigh-

bor was used as next vertex in the path. Since the number of neighbors is bounded by

the parameter, this is possible within f(k) space by not storing the description of the

corresponding vertex, but only the number the neighbor has, e. g., the 5th neighbor. In

this fashion the machine can traverse the complete graph and measure the length of

the currently considered path. Whenever the length of the considered path exceeds

d, the machine will return in the recursion.

Starting with d = 1, the machine can increase this counter and iteratively start a

bounded depth first search on vertex s. The machine can repeat this procedure until

we have d = n, or until a predefined target vertex t ∈ V was visited. The machine

will not need more than f(κ(G))+O(log |G|) space for the complete procedure.
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Notice the implied results of a iterative depth first search: We can not only test

s-t-reachability, we can furthermore explicitly compute the path between s and t,
as well as the distance between s and t.

Theorem 73

The problem pk-vertex-deletion-ureach is complete for the complexity class paraL

with respect to paraAC0-reduction.

Proof. To prove membership, we start with a few observations. First notice that if the

shortest path between s and t is, well, “short”, then we can easily delete some vertices

that are not on this path. In particular, if the shortest path between s and t has a
length of at most n − k, then it is possible to delete k vertices without destroying

s-t-connectivity. Thus, a Turing machine solving the problem has to decide if the

shortest path between s and t has a length of at most n− k.

A further observation is that a graph with shortest path of length more then n− k is

sparse. We can think of such a graph as a long chain of vertices of degree 2, and up

to k − 1 other vertices. Each of these k − 1 vertices can be connected to at most 3
vertices in the chain, since otherwise they would allow a “shortcut” and the shortest

path would have length of at most n−k. Thus, there are at most 4k−4 vertices with

degree greater than 2.

A Turing machine solving the problem now works as follows: First the machine com-

putes the connected component that contains s. The machine rejects if t is not in this

connected component, otherwise the machine deletes all vertices that are not part

of the connected component. Let from now on n be the number of vertices in the

connected component and k be the number of vertices which still have to be deleted

in the connected component.

The machine counts the number of vertices with degree higher than 2 and accepts if

there are more than 4k − 4 such vertices. If the machine has not decided till now,

the situation is as follows: There is a path from s to t and the graph is very sparse, in

particular at most 4k − 4 vertices have a high degree. Now the machine computes

the maximum degree δ of the graph. A further observation is that for a vertex v at

most itself and two neighbors can be part of the shortest s-t-path. Thus, if we have

δ > k + 2 the machine can accept, since we can for sure delete k neighbors of any

vertex v with δ(v) > k + 2 without destroying s-t-connectivity.

If the machine has still not decided, the situation now is that the number of vertices

with degree greater than 2 and the maximum degree itself are both bounded by the

parameter. Hence, the Turing machine can compute an iterative depth first search

starting by s using its f(k) storage with Lemma 72. Using this iterative depth first

search, the machine can compute the distance between s and t and accept if, and only

if, the distance is not greater then n− k.

Since the slice for k = 0 is the standard reachability problem in undirected graphs

and, thus, L-complete, we obtain that pk-vertex-deletion-ureach is complete for

paraL.
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This result is especially interesting since pk-vertex-deletion-ureach can be seen

as the parameterized dual problem of the parameterized distance problem. In the

parameterized distance problem the question is, if the the distance between s and t
is less or equal to k. In pk-vertex-deletion-ureach the question is, as argued in the

proof of Theorem 73, if the shortest path has a length of at most n − k. The crucial

fact is, that the standard parameterized distance problem is complete for paraβL [25],

while we have proven that pk-vertex-deletion-ureach is solvable within paraL.

4.3 Vision Based Reachability Problems

Sender: Secret Institute of Computer Science
Recipient: Agent 042
Status: Top Secret
Message: All current missions are revoked with immediate

effect. Priority subject Beta Three was spot-
ted in building G in room t. A helicopter takes
you to the roof, from which you will reach room
s. From here you have to find your own way to
room t, but be careful there are multiple war-
dens guarding different rooms. The wardens use
a new camera system that allows a single warden
to guard a couple of rooms. In room s is a port
to the server of the building, here you can hack
the system of a warden, which will allow you to
travel through guarded rooms. But beware, if
you hack more than k cameras, the general alarm
goes off. Choose carefully which k wardens you
will neutralize, the mission fails if you are
not able to travel unseen from s to t.
Good luck agent!

This message destroys itself in 5 seconds.

Now, agent, how do you handle this mission? The present section will investigate this

question and will further explain what this illustrated scenario has to do with the color

selection or color deletion problems that we have analyzed in the previous section. We

will introduce a new family of problems to cover this scenario: Graph vision problems.

In these problems we are given an undirected graph (the building) with a couple of

special vertices (the wardens). The wardens observe their neighborhoods, which could

be the set of adjacent vertices or the set of vertices with a given distance to the warden.

The objective is to find a path between two given vertices s and t that uses no guarded
vertex. The last piece of the problem is the possibility to delete k wardens, in order

to obtain such a path (the hack).

We investigate the resulting problems since they fit very naturally in the complexity

class paraWL. The nondeterminism of machines of this class allows us to guess the
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wardens that should be deleted; the result is a reachability problem that is solvable by

the underlying logspace machine. The first graph vision problem that we consider is

pk-warden-ureach, which we formally define as follows:

Problem 74 (warden-ureach)
Instance: An undirected graph G = (V,E), a set W ⊆ V of wardens, a vision

range function ν : W → {1, . . . , r}, two vertices s, t with s, t ∈ V and

two natural numbers k, r.
Question: Is it possible to delete k wardens such that there is an s-t-path on which

for all vertices v we have d(v, w) > ν(w) for all remaining wardens w.
Here, d is the distance function in graphs.

Since this problem has a couple of aspects – s-t-reachability, distance problems to

the wardens, and the search through the solution space for the k wardens – we will

consider different versions of the problem to analyze it more detailed. Let therefore

p-warden-ureach be the version in which r and k are part of the input, further let

p-wardenr=1-ureach and p-wardenk=0-ureach be the versions in which eachwar-

den has vision range 1 or in which we are not allowed to delete wardens, respectively.

We will study the problem parameterized by k, r, and k + r.

Example 75

Our spies were able to obtain the following plan from the building. The roof s and

the target room t are drawn in. Wardens are visualized as and their vision range is

illustrated by a red circle.

s t

One of our spies also found out that the general alarm in this building will go off if

more than 2 camera systems get hacked. Fortunately, this is enough! Which camera

systems will you hack?

Example 76

We will generally visualize wardens as . The following image shows some more

instances of the problem, all with ν( ) = 1:

s t s t s t

In the leftmost graph, it is possible to travel unseen from s to t, by deleting just two

wardens (the one in the center and either the top or bottom one). In the graph in
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the center of the picture all three wardens have to be deleted in order to open a path

between s and t. The rightmost instance can also be solved by deleting three of the

four wardens, finding them is left as an exercise to the reader.

We start slowly by investigating pk-wardenr=1-ureach. Remember that this is the

version in which all wardens have vision range 1, i. e., all wardens observe only their

direct neighborhood and, thus, we have no distance problems. The resulting version is

closely related to the color selection problems from the previous section, as the proof

of the following theorem is showing.

Theorem 77

The problem pk-wardenr=1-ureach is complete for paraWL via paraAC0-reduction.

Proof. Membership follows by the following Turing machine that gets the descrip-

tion of the k wardens on its choice tape. The machine first deletes the k guessed

wardens. Afterwards the machine deletes each vertex that is connected to one of the

remaining wardens. Finally, the machine deletes the remaining wardens and computes

s-t-reachability on the resulting graph with Reingold’s algorithm [63].

To show hardness, we reduce from pk-colored1-vertex-selection-ureach. The

central idea is to introduce one warden for each color and connect such a warden

to all vertices that have the corresponding color. The procedure is visualized in the

following image.

s

t

s

t

Now, every vertex is blocked by a certain warden and selecting a color translates

into deleting the corresponding warden, since each vertex is connected to exactly one

warden and all vertices of the same color are connected to the same warden. Thus,

deleting k wardens is equivalent to selecting k colors and since we are not allowed to

walk over wardens or delete other vertices, this fulfills the proof.

In the pk-wardenr=1-ureach-problem, the vision range of each warden is 1, i. e.,
wardens only observe their direct neighborhood. A more general version assigns a vi-

sion range ν(w) to each wardenw, and the warden then observes all vertices that have

a distance of at most ν(w) to the warden. This version becomes harder to solve, since

the underlying problem itself already becomes harder. While the underlying problem

in pk-wardenr=1-reach is basically reachability, it is a kind of a distance problem in

the version with a vision range function. Since the distance aspect makes the problem

harder itself, we will first analyze a version in which we are not allowed to delete any
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wardens. We will first consider the problem unparameterized in Theorem 78 to see

that the underlying problem already becomes harder. Then we consider the parame-

terized version in which we are not allowed to delete wardens in Corollary 79, finally

we put both aspects together and analyze pk,r-warden-ureach in Theorem 80.

Theorem 78

The problem wardenk=0-ureach is complete for NL.

Proof. We will first prove membership by providing a corresponding Turing machine

that solves the problem. The machine uses the standard nondeterministic guess and

forget algorithm for reachability, i. e., it guesses |V | times a successor vertex and does

always only store the vertex currently considered. Every time the machine guesses a

vertex v, it tests if the distance from v to all wardens w is larger than ν(w), i. e., if v
is usable. The Turing machine rejects if this is not the case. These tests are possible

within NL since the undirected distance problem lies in NL [42] and since NL is closed

under complement [41]. The machine accepts if it reaches t during this procedure.

Since the undirected distance problem is even NL-complete [42], we get completeness

of wardenk=0-ureach by the following reduction. Let G = (V,E) with s, t ∈ V
and d ∈ N be an instance of the undirected distance problem. We have to translate

the question of whether there is a path between s and t of length at most d to the

question whether it is possible to walk between two vertices such that each vertex on

this walk is unguarded. In order to do so, we add two new vertices s′ and t′ together
with the edges {s′, t} and {t, t′} to the graph. Furthermore, we let s be a warden

with ν(s) = d. The construction is illustrated in the following image.

G

s t

G

s t

s′

t′

In the new graph exists an unguarded path from s′ to t′ if, and only if, the distance

between s and t is greater than d, since otherwise s would observe t and make it

unusable for the path. Hence, we have reduced to the complement of the problem,

but since NL is closed under complement [41], this fulfills the proof.

This result directly implies paraNL-membership for the parameterized version of the

problem, where the parameter is the vision range r. Moreover, this version also lies in

XL, since such a machine can determine for each warden which vertices are covered

by the corresponding warden. To determine if a vertex v is covered by a wardenw, the
XL-machine can compute every path starting by w of length r and check, if v is part

of one of these paths. This is possible, since their are at most |V |r such paths, which

can be enumerated within f(r) · O(log |V |) space. Afterwards the machine removes
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all covered vertices and computes s-t-reachability with Reingold’s algorithm [63]. To-

gether, we obtain the following corollary:

Corollary 79

The problem pr-wardenk=0-ureach lies in paraNL ∩ XL.

This intersection already tells a lot about the complexity of the problem and a com-

pleteness result for one of the two classes is unlikely. If the problem is complete for

paraNL, then we have paraNL ⊆ XL and, thus, L = NL, since the reachability prob-

lem in directed graphs lies in paraNL for the default parameter. Completeness for XL

would imply XL ⊆ paraNL, which would not imply such a strong result. But it is

unclear how a paraNL-machine should simulate the huge amount of storage that a XL

machine has. We will come back to this intersection later in this chapter and discuss

it in more detail.

For the most general version, pk,r-warden-ureach, the complexity remains mostly

open, our best result is membership in paraWNL ∩ XL.

Theorem 80

The problem pk,r-warden-ureach lies in paraWNL ∩ XL.

Proof. Let us first prove membership in paraWNL. A corresponding Turing machine

solves the problem in two phases: First preprocessing and second reachability. To do

so, the machine gets the description of kwardens as f(k)·O(log |V |) nondeterministic

bits on its choice tape and deletes the corresponding k wardens. Afterwards, the

machine computes the distance between each vertex and each warden. Every vertex

that is in the range of a warden will be deleted as well. This phase is possible within

paraWNL, since the distance problem is solvable within NL [42]. Finally, in the second

phase the Turing machine computes s-t-reachability in the resulting graph with a

simple guess and forget algorithm, which successively guesses |V | vertices that build a

path from s to t. The machine accepts if it reaches t and rejects if no such path exists.

Let us now consider membership in XL. The Turing machine follows the same basic

concept as the paraNL-machine from above: First find the k wardens, then remove

guarded vertices, and finally compute s-t-reachability. The XL-machine has no non-

determinism to guess the k wardens, but it can iterate over all
(
n
k

)
≤ nk possibilities

of deleting k wardens within its f(k) · O(log |V |) space. For any such selection, the

machine computes which vertices are observed by one of the other wardens, removes

them, and tests s-t-reachability in the resulting graph. The reachability-test can be per-
formed by the XL-machine with the logspace algorithm from Reingold [63], the com-

putation of the distance problems can be performed by simulating the corresponding

paraβL-machine [26].

Better results for the problem remain open, since it is neither clear how a paraNL-

machine could determinewhichwardens should be deleted, nor is clear how a paraWL-

machine should solve the huge amount of arising distance problems.

Until now, the wardens were our “enemies” protecting some vertices on our path

between s and t. Instead, one could think about applications where the wardens

56



where our “friends” who make the path between the vertices safe for us. To prevent

confusion with the naming, we will consider another scenario to describe this kind

of problems: Energy management in modern cites. Consider a city in which every

crossing is illuminated by a lantern and several lanterns are connected to the same

energy hub. If someone shut down such a hub, all the connected lanterns will turn off.

The city wants to save energy and, thus, wants to power off some of the energy hubs.

Nevertheless, the mayor wants to ensure that there is still a completely illuminated

path between key locations in the city. We can model this setting by the following

graph problem.

Problem 81 (lantern-ureach)
Instance: An undirected graph G = (V,E), a set L ⊆ V of lanterns, a range

function ν : L → {1, . . . , r}, some marked vertices s, t ∈ V and two

integers k, r.
Question: Is there a selection of lanterns such that if these lanterns are removed

from the graph, there is still an s-t-path in which each vertex is con-

nected to a lantern ` by a path of length at most ν(`), but is no lantern

itself?

As for thewarden problem, we let p-lantern-ureach be the version inwhich k and r
are part of the input, further are p-lanternr=1-ureach and p-lanternk=0-ureach
the versions where the range of each lantern is 1 or where we are not allowed to

remove lanterns, respectively.

Example 82

The graph on the right side consists of normal vertices and lanterns . It is possible

s t

to delete two lanterns in order to pre-

serve an illuminated path from s to

t. This is possible by deleting the

lanterns at the bottom. However, in

this graph it is not possible to delete

more lanterns, because one would be

forced to delete one of the lanterns at

the top of the graph. These two vertices are both required to illuminate the path

between s and t.

We have already seen that the pk-wardenr=1-ureach-problem is closely related to

the color reachability problem pk-colored1-vertex-selection-ureach. In the fol-

lowing we will see that this translates to lantern problems as well, i. e., the problem

pk-lanternr=1-ureach is closely related to pk-colored1-vertex-deletion-ureach.

Theorem 83

The problem pk-lanternr=1-ureach is complete for paraWL via paraAC0-reduction.

Proof. Membership follows as for pk-wardenr=1-ureach by a Turing machine that

works in two phases. The machine gets the description of k lanterns on its choice

tape. In the first phase the Turing machine deletes the corresponding lanterns and
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all vertices that are not adjacent to another lantern. In the second phase, the Turing

machine tests s-t-reachability with Reingold’s algorithm [63].

Hardness follows by a reduction from pk-colored1-vertex-deletion-ureach. Sim-

ilar to the proof of Theorem 77, we introduced one lantern for each color. Then each

lantern is connected to each vertex of this color, as illustrated in the following image:

s

t

s

t

Thus, if we delete one lantern, all the adjacent vertices are not usable for a path from

s to t, since each vertex in the original graph has only one color and hence, is only

adjacent to one lantern. Therefore, deleting a lantern is equivalent to deleting a color

and since we have to delete k lanterns, this is equivalent to delete k colors.

Notice similarity of Theorem 77 and Theorem 83, but notice moreover the differ-

ence in detail. In Theorem 77 we reduced from a color selection problem, in Theo-

rem 83 from a color deletion problem. Also the problems pk-wardenr=1-ureach and

pk-lanternr=1-ureach may seem quite similar, it remains unclear how a direct re-

duction between the problems could look like, since such a reduction is not allowed

to set the parameter to something like n − k. We remark at this point, that the two

problems seem to be parameterized dual to each other.

The result of Theorem 78, where we have proved that wardenk=0-ureach is com-

plete for NL, directly transfers to lanternk=0-ureach. The only difference is, that

we do not have to use the property that NL is closed under complement. These ob-

servations lead to the following corollary:

Corollary 84

The problem lanternk=0-ureach is NL-complete.

Furthermore, with the same idea we used for Corollary 79, we also get the following

corollary for pr-lanternk=0-ureach:

Corollary 85

The problem pr-lanternk=0-ureach lies in paraNL ∩ XL.

And finally, the results of Theorem 80 also apply and we obtain:

Corollary 86

The problem pk,r-lantern-ureach lies in paraWNL ∩ XL.
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4.4 Combined Vision Problems

So far, we have considered vision-based reachability problems in which our task was

to find a path from a vertex s to another one t while avoiding wardens or while

staying in the range of lanterns. One could imagine these versions as one in which the

marked vertices close paths (wardens) and one in which they open paths (lanterns);

equally the marked vertices are in some sense “good” or “bad” for the objective. A

natural generalization of this scenario is a problem in which we have both, wardens

and lanterns. Such a version is especially interesting since we were not able to prove

completeness results for versions in which we have only wardens or lanterns and,

hence, a combined version could deliver more insights. We have seen in Corollary 79

that pr-wardenk=0-ureach lies in the intersection of paraNL andXL, and in an analog

manner we have seen in Theorem 80 that the problem pk,r-warden-ureach lies in

the intersection of paraWNL and XL. Furthermore, we obtained the same results for

these versions defined with lanterns instead of wardens. We will show in the present

section that these problems are, in some sense, complete for these intersections. To

achieve this, we will introduce new complexity classes that cover the intersections of

XL with paraNL and paraWNL, respectively. But let us start by first introducing the

combined version with wardens and lanterns.

Problem 87 (warden-lantern-ureach)
Instance: An undirected graph G = (V,E) with a set of wardens W ⊆ V and a

set of lanterns L ⊆ V with W ∩ L = ∅. Furthermore, a vision range

function ν : (W ∪L) → {1, . . . , r} is defined and two vertices s, twith

s, t ∈ V and two natural numbers k, r are given.
Question: Is it possible to delete k wardens or lanterns such that there is a path

P from s to t in G′ = (V \ (W ∪ L), E) in which we have for each

v ∈ P a lantern ` ∈ L with d(v, `) ≤ ν(`), but no warden w ∈W with

d(v, w) ≤ ν(w)? Here, d is the distance function in graphs.

As before, we denote with pr-wardenk=0-lanternk=0-ureach the version in which

r is the parameter and in which k is constant zero and not part of the input, i. e.,

the version without the possibility of deleting wardens and lanterns. As announced,

we need to define new complexity classes in order to analyze the complexity of the

problems from above. For the first new class, we will use a paraL Turing machine

together with a paraβL oracle. Let us therefore briefly recall the concept of oracle

Turing machines:

Definition 88

An oracle Turing machine is a standard Turing machine that is defined for an oracle

languageX ⊆ Σ?, has an additional write-only question tape, and has three additional

special states: ? , > , ⊥ .

The computation of an oracle Turing machine on input of a word w ∈ Σ? works as

follows:

. the machine does the normal computation of the underlying Turing machine;

. during the computation, the machine can write a word x to the question tape;
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. let x be the content of the question tape, if the Turing machine enters state ? ,

it will be transferred to > or ⊥ in one time step, depending on whether x ∈ X
holds or not, respectively;

. whenever the Turing machine visits ? , the content of the question tape will be

erased after x ∈ X was evaluated;

. whenever the machine visits ? , the content of all other tapes as well as all head

positions of the Turing machine are not modified.

Let M be a Turing machine and X ⊆ Σ? be a language, we denote with MX the

oracle Turing machine that is based on M and has X as oracle. We generalize this

notation for a complexity class C, i. e., we denote with CX a C-Turing machine that is

extended by an X oracle. Moreover, if X is complete for a complexity class C′ with

respect to a reasonable weak reduction, then we can also write CC′
, i. e., we can use

any language of C′ as oracle language.

We are now ready to define paraLparaβL, i. e., we set C = paraL and C′ = paraβL.

However, if we consider parameterized oracle Turing machines we have to consider

some details about the oracle tape:

Definition 89

The complexity class paraLparaβL is the set of all languages that can be recognized by

a paraL Turing machine using a paraβL oracle.

More precisely, a paraLparaβL Turing machine that decides a parameterized problem

(Q1, κ1) using the oracle language (Q2, κ2) ∈ paraβL has the following properties for

two computable functions f : N → N and g : N → N:
. it uses at most f(κ1(w)) +O(log |w|) space;
. for each x ∈ Σ? that is written to the question tape during the computation,

we have κ2(x) ≤ g(κ1(w)).

Since the distance problem parameterized by the distance is complete for paraβL, we

can conclude:

paraLparaβL = paraLpd-distance.

We will first analyze some basic properties of this complexity class. The idea behind

paraβL is to provide a machine with just a little nondeterminism. More precisely, the

number of nondeterministic steps that the machine can do is bounded by the param-

eter. However, a machine with a paraβL oracle has a lot more nondeterminism, since

the oracle can be called multiple times. But these nondeterministic calls are in some

sense independent: The machine cannot use more than a parameterized amount of

nondeterministic steps at once, i. e., it only can compute a bunch of small, indepen-

dent nondeterministic computations, and the rest of the program is deterministic.

Lemma 90

The class paraLparaβL is a subset of paraNL ∩ XL.

Proof. We will first show that a paraLparaβL machine M can be simulated by an XL

machine MXL. The XL machine can simulate the underlying paraL machine MparaL.
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Whenever MparaL makes a call to the oracle, MXL can simulate the corresponding

paraβLmachineMparaβL and provideMparaL with the result. This is possible since the

parameter of the oracle-call is bounded by the parameter of the input instance and,

thus,MXL can iterate over all possible contents of the choice tape ofMparaβL within

its f(κ(x)) · O(log |x|) space.
To prove that a paraNL machine MparaNL exists that simulates M , we prove that

MparaNL can even simulate a paraLparaNL machine. Again,MparaNL can easily simulate

the underlying paraL Turing machine MparaL. Whenever MparaL makes a call to the

oracle, MparaNL has to simulate the corresponding paraNL machine. This would be

obvious for a single call, but since the oracle is called multiple times, and sinceMparaNL

has to provide the result of the oracle computation toMparaL, it is not.

Let us therefore precisely describe howMparaNL can simulate a paraLparaNL machine,

therefore we describe howMparaNL can simulate a paraLX machine for a fixed oracle

language X ⊆ Σ? with X ∈ paraNL. Since X ∈ paraNL and since NL, and thus

also paraNL, is closed under complement [41], there are two paraNL Turing machines

MX and MX̄ that accept X and the complement of X , respectively. The MparaNL

machine can easily simulate the paraLX machine until it reaches a ? -state. When the

oracle is called, theMparaNL machine simulatesMX and traverses to > ifMX accepts

the content x of the question tape. This can safely be done, sinceMX can only accept

if x ∈ X holds. However, if MX does not accept, or more precisely does not reach

an accepting configuration, then we can not conclude that x /∈ X holds, since the

machine could just have made the wrong guesses. Thus, if MX does not accept, the

MparaNL machine simulatesMX̄ on input x. This machine can only accept if x /∈ X
holds and, hence, ifMX̄ accepts x thenMparaNL can safely traverse to ⊥ . IfMX̄ does

not accept, i. e., both machines have rejected, then the nondeterministic guesses of

MparaNL were for sure wrong and, thus,MparaNL rejects.

The last problem we face is thatMparaNL has no oracle-tape and that the word x that

is passed toMX orMX̄ could have polynomial size, i. e.,MparaNL can not write x to

its work tape and then start the simulation of MX or MX̄ . Instead, we have to use

a virtual tape. Therefore, we modify MX and MX̄ such that these machines “ask”

the simulating machine for the ith bit of x, i. e., for instance MparaNL simulates MX

and provides it only with the first bit of x. After some simulation steps, MX needs

the second bit and asks MparaNL for it. This procedure can be repeated until MX

has finished its computation. Since the parameter of x is furthermore bounded by

the parameter of the whole instance, we can conclude that the space of MparaNL is

sufficient to simulateMX andMX̄ . Hence,MparaNL is able to simulate a paraLparaNL

machine and, thus, is also able to simulateM . Together we can conclude:

paraLparaβL ⊆ paraNL ∩ XL.

In order to fill our new complexity class paraLparaβL with life, we introduce a first

complete problem: pr-wardenk=0-lanternk=0-ureach. The following theorem

will show that the problem fits in a natural way to this class and, thus, gives evidence

that paraLparaβL is the right way to look at problems of this kind.
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Theorem 91

The problem pr-wardenk=0-lanternk=0-ureach is complete for paraLparaβL with

respect to paraL-reduction.

Proof. We will first prove membership by providing a corresponding paraLparaβL Tur-

ing machine that decides the problem. The machine works in two phases: It will first

compute which vertices are usable and delete the other ones, afterwards the machine

will compute s-t-reachability on the resulting graph. We call a vertex usable if it is in

range of at least one lantern, but is not in range of any warden. The machine can de-

cide for each vertex if it is usable or not by computing the distance from this vertex to

each warden and each lantern. This computation can be done using the paraβL oracle,

since the size of the vision range is parameterized and since the parameterized distance

problem lies in paraβL. Afterwards the machine deletes all vertices that are not usable

and computes s-t-reachability on the resulting graph using Reingold’s algorithm [63].

To prove hardness we will bootstrap to the problem, i. e., we will reduce any problem

in paraLparaβL to pr-wardenk=0-lanternk=0-ureach by encoding the simulation of

a paraLparaβL Turing machine that can decide the problem as instance of the problem

pr-wardenk=0-lanternk=0-ureach. Since the underlying paraL Turing machine is

deterministic, the configuration graph GM,x of a paraLparaβL Turing machine M and

an input word x is a directed graph of outdegree 1 or 2, where outdegree 2 vertices

correspond to configurations in which the oracle is consulted. The two out-edges of

these vertices correspond to the possible results of the oracle call, i. e., “yes” and “no”.

Furthermore, we can modify the Turing machine in a way that it has a unique start

configuration s and an unique accepting configuration t. This can be obtained, for

example, by letting the machine delete the whole tape and move the head to the first

visited tape cell after the machine would have accepted, and let it accept afterwards.

The following figure illustrates such a configuration graph.

s ?

> ?

>

⊥

⊥

?

>

⊥

t

Like in the classical bootstrapping from L to ureach, our intention is that there exists

a path from s to t in this graph if, and only if, the corresponding machine would accept

its input. However, we are left with two problems: First of all the graph is directed,

and since the graph has vertices with degree greater than 1, we cannot simply forget

about the direction. For example in the graph above exists no directed path from

s to t; however, if we forget the edge directions there is such a path. The second
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problem is, that the vertices with outdegree 2 do not correspond to nondeterminstic

configurations, i. e., configurations in which the machine could use both transitions.

These vertices correspond to oracle calls and the machine must use the transition that

corresponds to the answer of the oracle. Thus, these vertices have outdegree 1 in some

sense, but to determine which edge has to be used, one must determine the result of

the oracle. Therefore, our task now is to block outgoing edges from vertices with

outdegree 2 in correspondence to the result of the oracle. If we achieve this, the graph

has quasi outdegree one, which means that each vertex has at most one outgoing edge

that is usable. Hence, if we delete the outgoing edges of t, we could forget about the

edge directions afterwards.

The tools that we have in order to achieve these goals are wardens and lanterns, which

we have not used until now. Recall that each consultation of the oracle is the solution

of a paraβL problem and since pd-udistance is complete for paraβL, an oracle call is

not more than the solution of a parameterized distance problem.

Let ? be a question configuration of the Turingmachine inwhich it consults the oracle.

The paraL Turing machine that computes the reduction can traverse backwards from
? in order to compute the content x of the question tape. This is possible since the

path between two ? configurations is deterministic and since the parameter of x is

furthermore bounded by the parameter of the whole instance. Let G? = (V,E) with

u, v ∈ V and d ∈ N be the instance of pd-udistance that corresponds to the oracle

call in ? , i. e., the instance encoded in x. Informally spoken, the Turing machine will

transfer from ? to > if the distance between u and v inG? is smaller or equal than d,
other wise the machine will transfer to ⊥ . We add G? two times to the configuration

graph and connect v once with > and the v from the other graph to ⊥ . Now we let

u in the first graph be a lantern with range d and in the second graph a warden with

range d. The following figure illustrates this process.

?

> ⊥

?

> ⊥

G?

d

G?

d

If the oracle call is a “yes”-instance, i. e., the distance between v and u in G? is smaller

than d, then > is covered by a lantern and, hence, usable. On the the other hand,

in this scenario is ⊥ covered by a warden and therefore not usable. The other way

around: Is the oracle call a “no”-instance, i. e., the distance between v and u in G? is

greater than d, then > is not covered by a lantern and, thus, not usable. Furthermore,
⊥ is not covered by a warden and therefore usable if it is covered by a lantern as

well. To achieve this, we add a global lantern to the graph, which has range 1 and is

connected to each vertex of the original configuration graph, without the > vertices.
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The situation now is as follows: Each vertex of the configuration graph which is not
> is connected to a lantern. Moreover, for each configuration in which the oracle is

consulted, the following > vertex is connected to a lantern if, and only if, the cor-

responding oracle call is positive. In this case, the ⊥ vertex for this configuration is

covered by a warden. In the case of a negative result, the vertex > is not covered by

a lantern, but therefore is ⊥ . Thus, the graph, which has only the vertices that are

covered by a lantern and are not covered by a warden, has an outdegree of at most

one. Hence, if we remove all outgoing edges from t and forget the directions of the

edges, we obtain an undirected graph in which an usable path between s and t exists
if, and only if, there was a directed one in the original graph.

All together, this implies that the constructed undirected graph has an s-t-path in

which each vertex is covered by at least one lantern and by no warden if, and only if,

the Turing machine would accept its input. This is because if such a path exists, there

is a sequence of computation configurations that the Turing machine does, matching

to the results of the oracle calls and leading to the accepting configuration.

With the last theorem, we found a way to describe the intersection of paraNL and XL

by a new oracle class. This motivates us to search for an analog description for the

intersection of paraWNL and XL. To do so, we introduce analog to paraWLparaβL the

class paraWLparaβL. In this oracle class the underlying Turing machine is able to use

nondeterminism and, thus, we have to be careful about how this nondeterminism can

influence the content of the question tape:

Definition 92

The complexity class paraWLparaβL is the set of all languages that can be recognized

by a paraWL Turing machine using a paraβL oracle.

More precisely, a paraWLparaβL Turing machine that decides a parameterized problem

(Q1, κ1) using the oracle language (Q2, κ2) ∈ paraβL has the following properties for

two computable functions f : N → N and g : N → N:
. it uses at most f(κ1(w)) +O(log |w|) space;
. it gets f(κ1(w)) · O(log |w|) choice bits as additional input;
. for each x ∈ Σ? that is written to the question tape during the computation,

we have κ2(x) ≤ g(κ1(w));
. if the machine starts to write content to the question tape, it is not allowed to

use its choice bits until it reaches ? , i. e., the content of the question tape has

to be deterministic.

This class may seem a little awkward at the first look, since with paraβL ⊆ paraWL,

the oracle is weaker than the underlying Turing machine itself. But the concept

of bounded nondeterminism makes this class interesting anyway. This is because a

paraWL Turing machine is indeed able to simulate a paraβLmachine, but it is not able

to simulate such a machine multiple times. Informally spoken, the bounded nonde-

terminism of a paraWLmachine is barely enough to simulate the paraβLmachine, but

for a second simulation the amount of nondeterministic bits is just not enough. Un-

fortunately, for a problem like pk,r-warden-lantern-ureach, the machine needs to
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solve certain problems very often, and for the computation of the solution for each of

these problems, the machine needs a bounded amount of nondeterminism.

The way we can think about such a machine is as follows: Also a paraWLparaβL Turing

machine as an overall unbounded amount of nondeterminism available, it can only

use a bounded amount of this nondeterminism for local computations. Thus, it is for

example not clear how such a machine should simulate a paraNL machine or solve

the directed graph reachability problem. It is simply not clear how the machine could

(in a trivial way) implement the guess and forget algorithm and check the correctness

of the computation globally. On the other hand, it is also not clear how a paraNL

machine should simulate a paraWLparaβL machine, since it is not even clear how it

could simulate a paraWL machine. Thus, paraWLparaβL seems to fit nicely into the

complexity hierarchy and can be placed in it by the following lemma:

Lemma 93

The class paraWLparaβL is a subset of paraWNL ∩ XL.

Proof. Since paraWL is a subset of XL, paraWLparaβL ⊆ XL follows analogously to

the proof in Lemma 90. Furthermore, paraWLparaβL ⊆ paraWNL follows analogously

to the proof of paraLparaβL ⊆ paraNL in Lemma 90. The only difference is that the

underlying Turing machine this time is a paraWLmachine, which can be simulated by

a paraWNL machine.

We will close this section by presenting a natural complete problem for the new com-

plexity class paraWLparaβL. In a similar way to paraLparaβL, we will introduce the

problem pk,r-warden-lantern-ureach as a complete problem for paraWLparaβL.

Theorem 94

The problem pk,r-warden-lantern-ureach is complete for paraWLparaβL with re-

spect to paraL-reduction.

Proof. Membership follows analogously to the proof of Theorem 91, i. e., the machine

computes for each vertex if it is usable or not, deletes all vertices that are not usable,

and computes s-t-reachability afterwards. The only difference this time is, that the

machine obtains the description of k wardens or lanterns on its choice tape and deletes

the corresponding wardens and lanterns before it starts with the actual computation.

For completeness, we will bootstrap all problems within paraWLparaβL to an instance

of pk,r-warden-lantern-ureach. Thus, we will describe a way to construct a graph

GM,x = (V ∪W ∪ L,E) with two vertices s, t ∈ V for each paraWLparaβL Turing

machineM and each word x ∈ {0, 1}? such that inGM,x exists a path from s to t on
which each vertex is covered by lantern ` ∈ L and is not covered by a warden w ∈W
if, and only if,M accepts x. To do so, we will first modifyM such thatM uses a binary

work tape and choice tape alphabet, has a unique start configuration s and a unique

acceptance configuration t. This is possible, for example, by lettingM clear the work

tape and move the head to the first tape cell after it would have accepted. Now let

GM,x be the configuration graph of M on input x. Thus, if in GM,x exists a path
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from s to t, the machine would accept x, since then there exists a sequence of valid

configuration steps that lead to the acceptance configuration and which corresponds

to x. However, we are left with a couple of problems here. The first obvious problem

is that GM,x is directed; and even worse, there are vertices in GM,x with outdegree

greater than 1 and, hence, we can not simply forget about the edge directions. The next

problem is the certificate: M does no simple nondeterministic steps, which would

produce configurations with outdegree 2 (since the guess could be a zero or a one

bit). Instead, the nondeterministic guesses of M are dependent, i. e., if a couple of

configurations define the successor configuration by the value of the first bit of the

choice tape, then of course this bit must be the same for all these configurations.

The oracle calls represent our last problem: A configuration that consults the oracle

defines its successor configuration by the outcome of this oracle call. However, the

configuration itself has outdegree 2, but only one of these outgoing edges can be used,

and it must be the one corresponding the answer of the oracle.

The following image illustrates a configuration graph, where ? represent configura-

tions in which the machine calls the oracle, > and ⊥ represent the possible result

configurations of these calls. Furthermore, C represents a configuration in which the

machine looks at the choice tape, 0 and 1 then represents the configurations in which

a 0 or 1 stands on the choice tape at the requested position.

s ?

> C

0

⊥

1

C

0

1

t

We will first handle the problem of the choice tape, for which we will use wardens

and the possibility to delete some of them. Remember that the size of the choice

tape of the machine is bounded by f̃(κ(x)) · O(log |x|) for a computable function

f̃ : N → N. Notice that we can write

f̃(κ(x)) · O(log |x|) = f̃(κ(x)) · c · dlog |x|e = f(κ(x)) · dlog |x|e

for |x| > 0, a constant c ∈ N, and a computable function f : N → N.
We will split the choice tape in blocks B1, B2, . . . , Bf(κ(x)) of size dlog |x|e. Hence,

each block Bi can represent |x| different strings si1, . . . , si|x|. We will introduce a

warden wi
j for each of these strings, so f(κ(x)) · |x| wardens in total. Now let C be

the vertex corresponding to a configuration in which the machine asks for a bit on the

choice tape. Let this bit be in blockBi and let s
i
α1
, . . . , siαp

be the strings of this block

in which this bit is 0 and let siβ1
, . . . , siβq

be the ones in which the bit is 1. Now we
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replace the edge from C to 0 by p disjoint path of length two. The center vertex of

path j then is connected to warden wi
αj
. Thus, all these paths are blocked by wardens

and the only way to get from C to 0 is by deleting one of the wardens wi
α1
, . . . , wi

αp
.

We do the same for the edge from C to 1 and the wardenswi
β1
, . . . , wi

βq
. The process

is illustrated in the following figure.

C

10

C

10

wi
α1
wi
α2
wi
α3

wi
β1
wi
β2

The deletion of a warden wi
1, . . . , w

i
|x| corresponds to the guess of dlog |x|e bits on

the choice tape and has the same effect in the whole graph, i. e., for each configuration

using a bit out of the block Bi.

In order to correspond to a valid computation, we have to ensure that exactly one

warden of each block will be deleted. Otherwise it would, for example, be possible

to open the path to both, the 0 and 1 configuration. In order to do so, we add a new

start vertex s′ to the graph. Afterwards, we add a path of f(κ(x)) layers between s′

and s. Each layer represents one of the blocks B1, . . . , Bf(κ(x)) and has |x| vertices.
Each of these vertices is connected to one of the wardens corresponding to the block

and, hence, to travel from one layer to another, one of the wardens corresponding

to the block must be deleted. Since we are only allowed to delete f(κ(x)) wardens

overall, we are forced to delete exactly one warden of each block, since otherwise

there would be no path between s′ and s and therefore no path between s′ and t.
This gadget is illustrated in the figure below.

s′ ...
. . . . . . ...

s

w1
1 w1

2
. . .

w1
|x|

. . .
w

f(κ(x))
1 w

f(κ(x))
2

w
f(κ(x))
|x|

f(κ(x))

67



The situation now is as follows: In order to have a chance to get an usable path from

s′ to t, we must delete f(κ(x)) wardens, one of each block Bi. Thus, each vertex

that does not represent a configuration in which the oracle is called now has quasi

outdegree one. Where quasi outdegree means, that at most 1 edge leads to a vertex

which is not covered by a warden. The only vertices which still have real outdegree 2
are the ones which call the oracle. For these, we use the gadget that we have already

used in Theorem 91. Notice that it can not happen that we delete wardens in this

gadget, since we have to use all f(κ(x)) deletions to open a path between s′ and s.
We close the construction by adding a global lantern that covers all vertices except

the negative results of oracles (since these have a local lantern in the gadget from

Theorem 91). Finally, we remove all outgoing edges from t and can then forget about

the edge directions, since each vertex has a quasi outdegree of 1.

In the resulting undirected graph exists a path from s′ to t that only uses vertices

covered by lanterns and not covered by a warden if, and only if, the machine M
accepts the word x. This is because if such a path exists, then a certificate exists for

the choice tape – defined by the selection of the f(κ(x)) wardens – such that there

is a sequence of configurations that correspond to x, namely the path, which leads to

the accepting configuration.
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4.5 Vision Problems in Trees

We have discovered different versions of warden and lantern reachability problems

in the last section. In the present section, we will restrict the problems to trees, or

more specificly: The part of the input graph without the wardens (lanterns) has to be

a tree.

Problem 95 (p-warden-treach)
Instance: An undirected graph G = (V,E) with a set of pairwise non adjacent

wardens W ⊆ V and the property, that T = (V \W,E) is a tree. A
vision range function ν :W → {1, . . . r} is defined on the wardens and

two vertices s, t as well as a natural number k is given.

Parameter: k, r
Question: Is it possible to delete k of the wardens such that there is path from s

to t in T on which no vertex v has a distance to a warden w of at most

ν(w)?

To analyze the complexity of this problem, we will use the fact that the problem

of finding an s-t-path in a directed forest with outdegree 0 or 1 is L-complete [16].

We will refer to this problem as directed-forest-reach and denote the problem

parameterized by a trivial parameter as p0-directed-forest-reach. Clearly, the pa-

rameterized version is complete for paraL. With similar techniques as the ones used

in [16] to reduce from directed-forest-reach to other L problems, we can prove

paraL-hardness results with directed-forest-reach.

Theorem 96

The problem pk,r-warden-treach is complete for paraL under paraAC0-reduction.

Proof. Wewill first handle the membership in paraL. A corresponding Turing machine

can remove the vision range function ν in a preprocessing step as follows: For each

warden w, the machine computes the distance to all vertices on the tree and, if the

distance is smaller than ν(w), add a new edge from the warden to these vertices. Thus,

each warden has then an edge to each vertex it would cover with the vision range

function and, hence, we can drop this function. This preprocessing step is possible

within paraL, since computing the distance on a tree is possible with a logarithmic

amount of space. After the preprocessing, the Turing machine computes the unique

path s → v1 → · · · → v` → t in T . For each vertex vi on the path, the machine

checks for each warden w if vi is covered by w. To do so, it simply has to check if

there is an edge between v and w. If vi is covered by w, then the machine checks for

each vj with j < i if vj is also covered by w. If none of the vj is covered by w, then
the Turing machine increases a counter by one. The counter now stores the number

of wardens that cover the path (and no warden is counted twice). Thus, the machine

accepts if the value of the counter is less or equal to k and rejects otherwise.

For hardness, we reduce from p0-directed-forest-reach. Let therefore G = (V,E)
be a directed graph with an outdegree of at most 1 and s, t ∈ V be the two marked

vertices. Wewill construct an undirected tree T out ofGwith the property, that there
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is an uncovered path between s and t if, and only if, there was a directed s-t-path in

G. In order to do so, we remove the outgoing edge from t, if such exist, and forget the

direction of each edge afterwards. We will now show that in the resulting graph G′

an undirected s-t-path exists if, and only if, there was a directed s-t-path before. The

first direction is clear, a directed path becomes an undirected path. Thus, consider

the case that there is no directed path from s to t and, for a contradiction, assume

that there is an undirected one in the new graph. Then there is a series of vertices

s↔ v1 ↔ · · · ↔ v` ↔ t in G, here ↔ should indicate that there is an edge between

the two vertices, but the direction of this edge is uncertain. Since this series of vertices

becomes a path inG′, the edge between v` and t has to be v` → t (otherwise wewould

have deleted the edge). But since each vertex has outdegree of at most one, the edge

between v`−1 and v` has to be v`−1 → v` as well. Thus, for each 1 < i < ` we have

vi−1 → vi → vi+1 and, hence, we have a directed path from s to t, a contradiction.

Now the s-t-reachability in G′ remains the same as in G, but G′ is just a forest and
not a tree. To overcome this issue, we build T by adding a new vertex λ to G′.
Furthermore, we add an edge from λ to t and to each vertex with outdegree 0 – i. e.,

each leaf – inG. The result is a tree, since each connected component inG has exactly

one vertex with outdegree 0. Because T now is a tree, s-t-reachability becomes trivial.

To obtain the original reachability properties, we add a warden w with ν(w) = 1 and

the edge {λ,w} to T . The result is a tree in which an uncovered path from s to t
exists if there was a directed s-t-path in G. If there was no such path in G, then the

corresponding path in T is covered by a warden. The whole reduction is visualized

in the following figure, from left to right the graphs G, G′ and T are illustrated. The

warden is, as before, drawn as .

s

t

s

t

s

λ

t

To complete the proof, we set k = 0 and r = 1. Thus, in the resulting instance one

is not allowed to remove any warden and hence, a path covered by the warden is not

usable for s-t-reachability.

Note, that our proof implicitly has shown that at least one slice of the problem

pk,r-warden-treach is complete for L, which also directly implies that the prob-

lem is paraL-complete [35]. Nevertheless, it also shows that this holds for all the slices

and that pk,r-warden-treach indeed is complete for L.

This result lets the reachability problems with wardens – for which we have proved

different results in the last section – drop massively down in the complexity hierarchy

if the graph is restricted to be a tree. We will close this section by proving that this

drop does not happen for a similar problem defined for lanterns.
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Problem 97 (p-lantern-treach)
Instance: An undirected graph G = (V,E) and a set of lanterns L ⊆ V with the

property that T = (V \ L,E) is a tree. Furthermore, a vision range

function ν : L→ {1, . . . , r} is defined on the lanterns and two marked

vertices s, t as well as a natural number k are given.

Parameter: k, r
Question: Is it possible to delete k lanterns such that there exists a path from s

to t in T on which for each vertex v exists a remaining lantern ` with

d(v, `) ≤ ν(`)?

We will will first prove that pk,r-lantern-treach is complete for W[1], which im-

plies that the problem lies probably not in paraNL or in a class below. This will also

imply, that it is unlikely that the problem is complete for paraWL (for which we

will prove membership later), since that would further imply a collapse of the hier-

archy. It is also unlikely that the problem falls to a class below paraWL, since its not

clear how the path from s to t or the distance to the lanterns should be computed in

lower classes. To prove these results, we will show complexity theoretical equality of

pk,r-lantern-treach and a version of the famous hitting set problem, which we will

call pk-huge-hitting-set.

Problem 98 (p-huge-hitting-set)
Instance: A hypergraph H = (V,E) and a natural number k.
Parameter: k
Question: Is there a subset V ′ ⊆ V of n − k vertices such that each edge of H

contains at least one vertex of V ′?

In contrast to the normal hitting set problem, this version searches for a hitting set of

size n − k and not of size k; however, k is still the parameter. Gutin, Jones and Yeo

showed that pk-huge-hitting-set is W[1]-complete [39].

Lemma 99

The problems pk,r-lantern-treach and pk-huge-hitting-set are equivalent with

respect to parameterized complexity under paraL-reduction.

Proof. We first show that we can reduce an instance G = (V ∪L,E) of the problem
pk,r-lantern-treach to an instance H = (V ′, E′) of pk-huge-hitting-set. Let

therefore s→ v1 → · · · → v|P | → t be the unique s-t-path P in T = (V,E), which

can be computed by a logspace Turing machine. We define for each vertex v ∈ P the

set of lanterns who cover v as NL(v) ⊆ L. This set can be computed by a logspace

Turing machine, since the distance problem on trees is solvable within logarithmic

space. Now we define the hypergraph for pk-huge-hitting-set asH = (L,E′)with

NL(v) ∈ E′ for each v ∈ P . Thus, we have for each vertex on the unique s-t-path
one edge in the pk-huge-hitting-set-instance. This edge contains all lanterns that

can cover the corresponding vertex and, thus, a hitting set – i. e., a set of vertices such

that in each edge of H is at least one of these vertices – is a selection of lanterns such

that each vertex on the path is covered by at least one of these lanterns. If we now
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search for a hitting set of size at most n − k, clearly there remain at least k lanterns

that can be deleted in the original graph.

Let us now reduce an instance H = (V,E) of pk-huge-hitting-set to an instance

G = (V ′ ∪L,E′) of pk,r-lantern-treach. In order to do so, we will let L = V and

add |E| vertices to V ′ which build with E′ a path on which the first vertex is labeled

as s and the last one as t. Each vertex on this path corresponds to an edge e ∈ E of

the hypergraph and we will add an edge to E′ from this vertex to each lantern that

is part of e in the original graph. If we are now able to delete k lanterns such that

each vertex on the path from s to t is still covered by a lantern, then there exists a

corresponding hitting set of size n− k in the hypergraph, i. e., all the lanterns that we

have not deleted.

Lemma 100

The problem pk,r-lanternr
k-treach lies in paraWL.

Proof. A paraWL Turing machine gets the description of k lanterns on its choice tape

in form of f(k) · O(log |x|) nondeterministic bits. The Turing machine first deletes

the k corresponding lanterns. Then the machine computes the distance of each ver-

tex to each lantern, which is possible within logarithmic space, since the underlying

graph is a tree. Finally, the machine deletes all vertices that are not in range of any

lantern, together with all remaining lanterns. The Turing machine then computes

s-t-reachability on the resulting forest.

4.6 Versions on Directed Graphs

We will close this chapter by revisiting the discussed problems on directed graphs.

First results for problems of this kind where again made by Elberfeld, Stockhusen, and

Tantau [26], who provided paraWNL-completness results for the three natural prob-

lems pk-colored-edge-selection-reach, pk-colored1-edge-selection-reach as

well as pk-coloredF -edge-selection-reach. We can apply the tools of Section 4.1

and 4.2 in order to obtain the following corollary:

Theorem 101

All of the following problems are complete for paraWNL under paraAC0-reduction:

. pk-colored-edge-deletion-reach;

. pk-colored1-edge-deletion-reach;

. pk-colored1-vertex-selection-reach;

. pk-colored1-vertex-deletion-reach.
Theorem 101 furthermore implies that also the problems pk-wardenr=1-reach and

pk-lanternr=1-reach are complete for paraWNL.

Corollary 102

Both, pk-wardenr=1-reach and pk-lanternr=1-reach, are complete for paraWNL

under paraAC0-reductions.
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For the other problems, the results follow not so easily. We will first consider the

warden and lantern problems with a parameterized vision range, in which we are not

allowed to delete wardens or lanterns. In the directed case, it is not clear how these

problems could lie in XL. This guess gets evidence though the following theorem:

Theorem 103

The problem pr-wardenk=0-reach is complete for paraNL under paraAC0-reduction.

Proof. Membership follows from the previous used nondeterministic Turing machine,

which first computes the distance of eachwarden to each vertex and deletes all vertices

that are covered by a warden. Afterwards, the machine guesses an s-t-path of length at
most |V | one vertex by another. The machine accepts if it reaches t in this procedure.

For completeness, we can use the standard bootstrap argument from NL to reach.
The only difference is, that we add a parameter sized set of isolated wardens to the

graph. Thus, it is always possible to delete k wardens and the parameter size stays the

same.

This result also holds for pr-lanternk=0-reach:

Corollary 104

The problem pr-lanternk=0-reach is complete for paraNL via paraAC0-reduction.

In a previous section we studied the problem pk,r-warden-ureach and were, unfor-

tunately, not able to prove completeness for any class. We can resolve this issue for

directed graphs and prove paraWNL-completeness.

Theorem 105

The problem pk,r-warden-reach is paraWNL-complete under paraAC0-reduction.

Proof. The problem clearly lies in paraWNL: A corresponding Turing machine gets the

description of k wardens on its choice tape. The machine deletes these k wardens and

computes the distance of the remaining wardens to each vertex. Afterwards the ma-

chine deletes all vertices that are in range of any warden and computes s-t-reachability
on the resulting graph using a standard guess and forget algorithm.

Hardness follows from the fact that the problem is a general case of the problem

pk-wardenr=1-reach, for whichwe have already proven that it is paraWNL-complete.

Corollary 106

The problem pk,r-lantern-reach is paraWNL-complete under paraAC0-reduction.

The last directed graph problem that we will consider in this section is the problem

pk-vertex-deletion-reach, i. e., the problem of determining if it is possible to delete

k vertices of a graph in order to preserve a path from s to t.
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Theorem 107

The problem pk-vertex-deletion-reach is complete for paraNL with respect to

paraAC0-reduction.

Proof. For membership, we use the following paraNL-algorithm: Start at s and guess

nondeterministically an s-t-path one vertex after another. Increment a counter for

each used vertex. If after |V | − k steps the vertex t was not reached, then reject;

accept otherwise. Correctness follows from the fact that the instance has a solution if,

and only if, the shortest path between s and t has a length of at most |V | − k. Since if
this is the case, there are at least k vertices not on the path, and these can be deleted.

On the other hand, if the shortest path has more than |V |−k vertices, then removing

k of them will destroy the path.

For completeness, we use the same bootstrapping argument as we have used in The-

orem 103.

4.7 Complexity Maps

pk,r-warden-lantern-ureach

pk-wardenr=1-reach

pk-wardenr=1-ureach

pr-wardenk=0-reach

pr-wardenk=0-lanternk=0-ureach
pd-distance

pk,r-warden-treach

XL

paraWNL

paraNL

paraWLparaβL

paraWL

paraLparaβL

paraβL

paraL

Membership

Complete with respect to paraAC0-reduction

Complete with respect to paraL-reduction
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5 GRAPH SEPARATION PROBLEMS

In this chapter, our focus lies on graph separation problems. These are problems in

which we are given a graph and are asked to determine whether it is possible to delete

a given amount of vertices or edges in order to separate the graph in a certain way.

Marx has studied different separation problems in [58]. A general version, which he

has studied and which we will analyze with respect to space and circuit complexity as

well, is the p-cutting-`-vertices-problem. In this problem we are given a graph and

two integers k, `. Our task is to decide, if it is possible to delete k vertices in order to

separate a set of ` vertices from the rest of the graph. If we set ` to be half the size of

the remaining graph, i. e., that the deletion of k vertices splits the graph in two equally

sized subgraphs, then we obtain the p-vertex-bisection-problem. This version was

recently studied by Bevern, Feldmann, Sorge, and Suchý, who showed that the prob-

lem parameterized by k isW[1]-hard for general graphs [70]. They further provided an

FPT-algorithm for the case that one can guarantee that the graph has a constant num-

ber of connected components after the deletion of the k vertices. They motivated

this version by the consideration that graphs in practice tend to break into very few

components. Furthermore, they argued with the fact that the separated sets of the

optimal bisection are connected with high probability on random regular graphs [10].

If we restrict the problem further to a version in which we are asked to delete k
edges instead of vertices, we obtain the p-edge-bisection-problem (in the literature

often referenced as bisection or minimum-bisection). The edge-bisection problem

is one of the classical NP-complete problems [36]. Bevern et al. [70] summarized the

set of applications of edge-bisection, which ranges from divide-and-conquer algo-

rithms [53] and route planning [21], up to image and video texture synthesis in com-

puter vision algorithms [51]. Also the range of applications is huge, Cygan, Logshtanov,

Philipczuk, and Philipczuk mentioned that edge-bisection is one of the last classical

problems, whose status with respect to parameterized complexity was open for a long

time. They summarized the huge effort, which was provided by the computer science

community, to handle this separation problems: edge-bisection was massively stud-

ied with respect to approximation algorithms [29, 28, 48, 62], under different heuris-

tics [9, 11], and with the aspect of average case complexity [10]. It took until 2014, till

Cygan et al. where finally able to provide an FPT-algorithm for pk-edge-bisection,
which is based on a new graph decomposition technique [19].
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5.1 Cutting Vertices

We start our journey through the world of graph separation problems with the most

general version: The p-cutting-`-vertices-problem. As mentioned earlier in the

X S Y

introduction of this chapter, we are asked to cut `
vertices away by deleting k vertices. With other

words, we are searching for a separator S of size

at most k, which splits the graph into two partsX
and Y such thatX has exactly size `. This process
is illustrated in the image at the right site. Formally, the problem can be defined as

follows:

Problem 108 (cutting-`-vertices)
Instance: A graph G = (V,E) and two integers k, `.
Question: Is it possible to partition V into three disjoint sets X , S, and Y with

|X| = ` and |S| ≤ k such that each vertex in X has no neighbor in

Y ?

Example 109

We will start with a small example to illustrate the p-cutting-`-vertices problem.

Let us consider the following graph:

In the following, we will mark X with blue and S with orange. If we set k = 1, we

can separate ` = 4 vertices, as shown in the following images:

For k = 2, one could cut the following sets of size ` = 3:
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Other combinations for k and ` are possible, for example one also could cut ` = 2
vertices by deleting k = 3 vertices.

Natural parameters of this problem are k and `, or both at the same time. Marx has

shown that all three versions – pk-cutting-`-vertices, p`-cutting-`-vertices, and
pk,`-cutting-`-vertices – are W[1]-hard [58]. We will see in this section that these

problems fall into different complexity classes, if we analyze them with respect to

parameterized space and circuit complexity.

Theorem 110

The problem pk-cutting-`-vertices lies in paraWL.

Proof. We consider the following paraWL Turing machine in order to prove member-

ship. The machine gets the description of k vertices as f(κ(x)) · O(log |x|) nonde-
terministic bits on its choice gates. The machine starts by deleting the corresponding

k vertices. Afterwards, the machine computes all connected components of the re-

maining graph. In order to do so, it will consider the natural order of the vertices,

which is defined by the input. Each connected component then is represented by

the vertex with the smallest index (with respect to this order) that is part of the

component. In this way, a logspace Turing machine is able to identify all connected

components and their size. Now the question is, whether it is possible to split the

set of connected components into two parts such that one part has exactly size `.
This is a subset-sum instance and since the numbers in this instance are represented

by connected components, the instance is encoded in unary. Thus, it is possible to

solve the subset-sum-problem with a TC0-circuit [24]. Together with the fact that a

TC0-circuit can be simulated by a logspace machine, we get membership for paraWL

of pk-cutting-`-vertices.

Unfortunately, it remains open if pk-cutting-`-vertices is also paraWL-hard. How-

ever, we will prove paraWL-hardness for a similar problem based on wardens, which

wewill define in Section 5.3. But for now, let us further analyze p-cutting-`-vertices.
The second parameterization that Marx has studied was the parameterization by `, the
number of vertices that we want to cut away. Informally said the problem now is to

find a huge set of vertices that separate a tiny (parameter sized) part of the vertices

from the rest of the graph. Although Marx has proved that this version isW[1]-hard as

well [58], intuitively it seems a little bit “easier”. And indeed, with respect to parame-

terized space and circuit complexity, this problem drops in the complexity hierarchy,

as we will see in the following theorem.

79



Theorem 111

The problem p`-cutting-`-vertices lies in paraWTC0.

Proof. A paraWTC0-circuit can solve p`-cutting-`-vertices as follows: The descrip-

tion of the ` vertices of X is presented on the circuit’s choice gates. Using threshold

gates, the circuit can determine, if the number of vertices v 6∈ X that are connected

to vertices in X is smaller than k. If this is the case, there clearly exists a separator S
of size at most k, since one could just delete all vertices connected toX . If the circuit

on the other hand counts more than k neighbors, then it is not possible to separate

the guessed ` vertices by deleting only k vertices.

To prove paraWTC0-hardness turns out to be quite difficult, since (as far as the author

knows) there are no known paraWTC0-complete problems and also no known tools

that would provide complete problems.

At the end of this section, we will analyze a version of p-cutting-`-vertices in which

both, k and `, are parameters. Thus, given a graph, we are searching for a tiny (param-

eter sized) set of vertices that separates another tiny (parameter sized) set of vertices

from the rest of the graph. This version still remains W[1]-hard, although it seems to

be much more parameterized and, hence, “easier” [58]. The following theorem shows

that the problem, indeed, becomes “easier”, since it is solvable by weaker circuits.

Theorem 112

The problem pk,`-cutting-`-vertices lies in paraWAC0.

Proof. A paraWAC0-circuit for this problem has a fairly simple structure: The de-

scription of the sets X and S is presented on the choice gates. This is possible, since

|X| = ` and |S| ≤ k, and since both, k and `, are parameter. The circuit just checks

for each edge (u, v) ∈ E if u is inX if, and only if, v is inX or S . Afterwards, a single

big and-gate can check if this is the case for all edges.

We should not invest too much hope in a completeness result for this version, since

pk,`-cutting-`-vertices is not only W[1]-hard, but also W[1]-complete, as stated by

the following lemma. Thus, completeness for paraWAC0 would imply the relationship

paraWAC0 ⊆ W[1]. Until now, we have omitted any definition of the W-hierarchy,

since this work has not the aim to handle this hierarchy in any form. We refer the

interested reader to the textbook from Flum and Grohe for an introduction to the

W-hierarchy [35]. This textbook also provides a detailed introduction to the corre-

sponding logic. However, for the following lemma, the following very rough descrip-

tion of W[1] is sufficient. A parameterized problem (Q,κ) lies in W[1] if it can be

FPT-reduced to the question, whether or not a logical structure A is a model for

a first-order formula ϕ(X) with one free relation variable X such that the satis-

fying assignment of X has cardinality k. Furthermore, ϕ(X) has to have the form

ϕ(X) = ∀x1 . . . ∀x` ψ for a quantifier-free formula ψ, and k has to be bounded by

the parameter.
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Lemma 113

The problem pk,`-cutting-`-vertices lies in W[1].

Proof. The following formula ϕ uses only ∀-quantifiers and has, thus, no changes be-

tween quantifier types.

ϕ(X,S) = ∀u, v � E(u, v) ∧X(u) → X(v) ∨ S(v)

The formula ϕ describes the problem p-cutting-`-vertices, since it checks for two

sets of vertices X and S, if there is no edge from X to a part of the graph that is

neither X nor S . Thus, a graph G together with two integers k and ` build a word of

p-cutting-`-vertices if there are sets X and S with |X| = ` and |S| = k, such that

G is a model for ϕ(X,S). Moreover, we can replace the two unary relation variables

X and S by a single binary relation B and adapt ϕ correspondingly:

B = { (x, 0) | x ∈ X } ∪ { (s, 1) | s ∈ S }.

Since both, k and `, are parameterized, this implies pk,`-cutting-`-vertices ∈ W[1].

5.2 Vertex- and Edge-Bisection

Although we already have analyzed the most general graph separation problem with

p-cutting-`-vertices, we will briefly summarize the results for the well known prob-

lems p-vertex-bisection and p-edge-bisection in the present section. As described

in the introduction of this chapter, the problem p-vertex-bisection is the special case

of p-cutting-`-vertices where we set ` = (|V | − k)/2.

Problem 114 (p-vertex-bisection)
Instance: A graph G = (V,E) and an integer k.
Parameter: k
Question: Is it possible to split V into three disjoint setsX,S, Y such that there is

no edge between vertices inX and Y , and that we have |S| ≤ k as well

as
∣∣|X| − |Y |

∣∣ ≤ 1?

It is known that pk-vertex-bisection is W[1]-hard in the general case, and in FPT if it

is guaranteed that the graphG′ = (V \S,E) has a constant number of connected com-

ponents [70]. However, since both versions are special cases of pk-cutting-`-vertices,
we can conclude that both versions lie in paraWL.

Corollary 115

The problem pk-vertex-bisection lies in paraWL. Therefore, the version in which

it is guaranteed that after the deletion of the k vertices only a constant number of

connected components exists, lies in paraWL as well.

These results also apply for the more restricted problem p-edge-bisection, in which

we are asked to delete edges instead of vertices in order to construct a bisection of the

graph.
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Problem 116 (p-edge-bisection)
Instance: A graph G = (V,E) and an integer k.
Parameter: k
Question: Is there a partition of V into two disjoint sets X and Y such that we

have
∣∣|X| − |Y |

∣∣ ≤ 1 and such that there are at most k edges between

vertices in X and Y ?

As mentioned before, this problem is fixed parameter tractable [19]. It is also not sur-

prising that it falls into the same parameterized space complexity class as the problem

p-vertex-bisection.

Theorem 117

The problem pk-edge-bisection lies in paraWL.

Proof. A paraWL Turing machine can solve the problem as follows: It gets the de-

scription on k edges presented on its choice tape and deletes the corresponding edges

in a first step. The machine afterwards computes all connected components in the

resulting graph. Through the natural order of the vertices in the input, the machine

can identify each connected component by the vertex with the smallest index within

this connected component. Then the Turing machine computes the size of each of

these connected components and is left with the question, if it is possible to divide the

set of connected components into two equally sized parts. This task is an instance of

unary encoded subset-sum and, thus, can be computed by a TC0-circuit [24], which

can be simulated by a logspace Turing machine.

5.3 Separation Problems with Wardens

So far, we have analyzed classical separation problems, in which the objective is to,

well, separate a set of vertices from a graph by deleting some vertices or edges. This

setup can be generalized if we search for a set of vertices with more properties. Con-

sider for example the following scenario: The owner of a huge piece of groundwants to

construct a building of size ` on her land. However, her land is covered by a couple of

obstacles that block the construction in some parts of the area. A first question would

be, if there is a connected field of size ` that is not blocked? If this is the case, the owner

can simply construct her building there. If it is not the case, a logical next question is

how many obstacles have to be removed, in order to obtain a free connected field of

size `? To model this problem as a graph problem, remember Chapter 4, where we

have introduced warden problems. These are problems in which we are given a graph

with two kinds of vertices: Normal ones and wardens. In the mentioned chapter, we

have studied reachability problems on such graphs and have seen that they fit very

well in the setup of parameterized space complexity with bounded nondeterminism.

In the present section, we will analyze a warden problem that models the scenario

from above. More specifically, we are given a graph G = (V,E) together with a set

of wardensW ⊆ V . The resulting question is whether it is possible to delete k war-

dens such that there are at least ` connected vertices X ⊆ V that are not covered by

a warden.
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Problem 118 (p-warden-region-uncover)
Instance: A graph G = (V ∪W,E) with a set of wardensW , together with two

integers k, `.
Parameter: k
Question: Is it possible to delete k wardens w ∈ W such that there is a set of `

connected vertices X ⊆ V that are all not adjacent to any warden?

Example 119

For an example, consider the grid graph illustrated in the following image, which is

covered by a couple of wardens. As usual, we denote the wardens by .

In the graph (left image), each vertex is covered by at least one warden and, thus,

there is no connected uncovered area at all. Let us say we are allowed to delete k = 3
wardens. Then we could uncover a connected area of size ` = 5 as illustrated in the

right image. The wardens that will be deleted are marked as , and the vertices of the

uncovered connected area are marked as .

Theorem 120

The problem pk-warden-region-uncover is complete for paraWL with respect to

paraAC0-reductions.

Proof. We will first prove membership for paraWL by constructing a corresponding

Turing machine. Such a machine gets the description of k wardens presented on its

choice tape. The machine first deletes the corresponding k wardens, then it deletes

all vertices that are adjacent to a remaining warden, and finally it deletes all resid-

ual wardens. This operation cuts the graph in a couple of connected components,

each completely unguarded by the wardens. Thus, the machine now has to check if

one of these connected components has a size of at least `. Since both, identifying

connected components and measuring the size of connected components, is possible

within logspace, it follows that pk-warden-region-uncover lies in paraWL.

For paraWL-hardness, we reduce from pk-wardenr=1-ureach. A problem for which

we have already proved paraWL-completness in Theorem 77. Remember, in this prob-

lem we are given a graph G = (V,E) with a set of wardensW ⊆ V and two vertices
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s, t with s, t ∈ V . Our objective is to determine, whether or not it is possible to

delete k wardens such that there is a path from s to t on which no vertex is a warden

nor connected to a warden. The basic idea of the reduction is to add huge connected

components to s and t such that an uncovered connected component of a certain size

only can be obtained, if there is an uncovered path between s and t. We construct

a new instance I = (`, k,G′ = (V ′, E′)) for pk-warden-region-uncover in the

following way: Let |V \W | = n, we add a path of n vertices to s and another path of

n vertices to t. All these 2n vertices will not be connected to any warden. We now

set ` = 2n and let k be the same as in the instance of pk-wardenr=1-ureach. The
construction is illustrated in the following figure.

s t

For correctness of the construction imagine that it is possible to delete k wardens such

that there is an uncovered path P from s to t. Then by deleting the same wardens in

G′, we uncover a region of a size of at least 2n+ |P |, which is greater than `. On the

other hand, if it is possible to delete k wardens in G′ such that there is an uncovered

region with a size of at least `, then either s or t must be part of this region. If both

would not be part of the region, then the region could have a size of at most n − 2.
Without loss of generality, we can assume that s is part of the region. Since the size of
the uncovered region is greater than `, there have to be n other vertices (beside s and
the path we added to s) in the uncovered region. There are two possible ways that

could happen, either there is a path from s to t and, hence, the n vertices we added to t
are part of the region as well; or all n vertices of the original graph are part of the region,

which also implies a path from s to t. Together it follows, that it is possible to delete k
wardens in G in order to obtain an uncovered path from s to t if, and only if, it is also

possible to delete k wardens in G′ in order to obtain an uncovered connected region

of size `. Thus, we get paraWL-completness for pk-warden-region-uncover.
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5.4 Complexity Map

pk-cutting-`-vertices
p`-cutting-`-vertices
pk,`-cutting-`-vertices

pk-warden-region-uncover

pk-vertex-bisection
pk-edge-bisection

paraWL

paraWTC0

paraWAC0

W[1]

FPT

Membership

Complete with respect to paraAC0-reduction
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6 CONCLUSION AND OUTLOOK

The main objective of this work was to fill the different parameterized space and cir-

cuit classes from the framework by Elberfeld, Stockhusen, and Tantau with life [26].

We achieved this with a couple of different problems for which we where able to

prove completeness for most of these classes. Furthermore, we have provided prob-

lems that fall into the intersections of different complexity classes, which gives ev-

idence that all aspects of these classes are necessary. We started the work with the

automata intersection problem in Chapter 2. For different parameterizations of the

problem, most of them are hard for a layer of the W-hierarchy, we proved member-

ship in different paraW-classes. We also were able to prove that the version parame-

terized by the number of automata and the number of states of these automata lies in

paraAC0, which implies that it lies in FPT. This resolves an open problem fromWare-

ham, reported in the compendium by Cesati [13]. In Chapter 3 we then have analyzed

different vertex ordering problems and where able to prove, that these problems can

be solved within time efficient XNL.

The core of the work was Chapter 4, where we have analyzed different colored reach-

ability problems. Such colored reachability problems where already considered by

Elberfeld, Stockhusen, and Tantau and were proved to be paraWL-complete. How-

ever, many natural parameterized graph problems that lie in paraWL are more of the

kind: “Is it possible to delete k vertices such that . . .?” For example in the parameter-

ized feedback vertex set problem we have: “Is it possible to delete k vertices such that

the remaining graph is cycle free?”; in vertex-bisection problems we have: “Is it pos-

sible to delete k vertices such that the connected components of the remaining graph

can be partitioned into two equal sized sets?” These problems motivated us to de-

fine handy versions of the colored reachability problems, in which the task is to delete

some vertices. The results where the warden and lantern reachability problems, which

are both good candidates for further reductions. We also have analyzed intersections

of complexity classes in this chapter. Elberfeld, Stockhusen, and Tantau already filled

the intersection of paraNL and paraWLwith paraβL. However, the intersections ofXL

and paraNL or paraWNL where still undiscovered. In this thesis we filled these inter-

sections with paraLparaβL and paraWLparaβL and provided complete problems for both

classes. These problems where based on warden and lantern reachability problems.

The last chapter was Chapter 5, where we have considered graph separation prob-
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lems. An eye catcher in this chapter was the problem of cutting ` vertices away from

a graph. This problem is known to be W[1]-hard for different parameterizations, and

we showed that these different versions fall into different complexity classes in pa-

rameterized space and circuit complexity, i. e., paraWL, paraWTC0, and paraWAC0.

This shows the amount of detailed information about a problem that we can obtain

by considering parameterized space and circuit classes. It also shows the strength of

parameterized circuit classes if local graph properties are considered.

While the framework by Elberfeld, Stockhusen, and Tantau is quite detailed and while

we have provided a couple of problems for the different classes, there are still a lot of

unanswered questions. Obvious is, that there are a lot more “certain” problems that

are famous in the parameterized complexity scene and which are still not considered

with respect to parameterized space and circuit complexity. Here, one can hope for a

deeper understanding of many different problems and maybe even for some new and

fast algorithms. Another point are parameterized circuit classes. While parameterized

space classes already obtained a lot of attention by Elberfeld, Stockhusen, and Tantau

and where also heavily analyzed in Chapter 4, this is not the case for parameterized

circuit classes. For them, many open questions remain, as there are still no complete

problems for many of these classes. Also, in case of paraWTC0, it is not even clear how

one could provide such complete problems under a weak standard reduction. Thus,

the field of parameterized circuit complexity should be a target of further research.

Another point is the complexity of the framework, which is quite huge. If one wants

to consider a problems complexity with respect to parameterized space and circuit

classes, one always has to check the para-classes, the paraW-classes, and the X-classes.

It is therefore likely that one overlooks one of the classes or intersection of classes. The

question thus is, if all of the classes are needed or if the size of the framework can be

reduced. Since we have seen problems in all of these classes, it is unlikely that one can

easily reduce the size of the framework by removing some classes. Thus, one maybe

needs another point of view for some aspects of the framework. Such new aspects

can work, as we have seen with the classes paraLparaβL and paraWLparaβL, although our

results did not reduce the size of the framework.
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REGISTER OF PROBLEMS

Problem Parameter Complexity Reference

p-dfa-intersection k XNL-complete 9 on Page 12

p-dfa-intersection m paraWL ∩ XAC0 18 on Page 19

p-dfa-intersection k,m paraWL ∩ XAC0 22 on Page 20

p-dfa-intersection q,m paraWNC1 ∩ XAC0 23 on Page 21

p-dfa-intersection q, k paraAC0 26 on Page 23

p-fdfa-intersection k XNLFPT-complete 13 on Page 16

p-nfa-intersection k XNL-complete 12 on Page 16

p-nfa-intersection m paraWNL ∩ XAC0 19 on Page 20

p-nfa-intersection k,m paraWNL ∩ XAC0 22 on Page 20

p-nfa-intersection q,m paraWNC1 ∩ XAC0 23 on Page 21

p-nfa-intersection q, k paraAC0 26 on Page 23

p-δCdfa-intersection k XNLFPT 28 on Page 26

p-δHdfa-intersection k XNLFPT 29 on Page 26

p-δCdfa-intersection m paraWAC0 30 on Page 26

p-δHdfa-intersection m paraWAC0 30 on Page 26

p-δCdfa-intersection m, s paraAC0 31 on Page 27

p-δHdfa-intersection m, s paraAC0 31 on Page 27

p-δCdfa-intersection k, r paraNL 32 on Page 27

p-δHdfa-intersection k, r paraNL 32 on Page 27

p-δCdfa-intersection k,m paraβL ∩ paraWAC0 33 on Page 28

p-δHdfa-intersection k,m paraβL ∩ paraWAC0 33 on Page 28

p-bandwidth k XNLFPT 36 on Page 32

p-cutwidth k XNLFPT ∩ XLNU 53 on Page 39

p-imbalance k XNLFPT 56 on Page 40

p-colored1-vertex-selection-ureach k paraWL-complete 63 on Page 46

p-colored-edge-deletion-ureach k paraWL-complete 66 on Page 47

p-colored1-edge-deletion-ureach k paraWL-complete 68 on Page 49

p-colored-vertex-deletion-ureach k paraWL-complete 69 on Page 50

p-colored1-vertex-deletion-ureach k paraWL-complete 70 on Page 50

p-vertex-deletion-ureach k paraL-complete 73 on Page 51
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p-wardenr=1-ureach k paraWL-complete 77 on Page 54

wardenk=0-ureach – NL-complete 78 on Page 55

p-wardenk=0-ureach r paraNL ∩ XL 79 on Page 56

p-warden-ureach k, r paraWNL ∩ XL 80 on Page 56

p-lanternr=1-ureach k paraWL-complete 83 on Page 57

lanternk=0-ureach – NL-complete 84 on Page 58

p-lanternk=0-ureach r paraNL ∩ XL 85 on Page 58

p-lantern-ureach k, r paraWNL ∩ XL 86 on Page 58

p-wardenk=0-lanternk=0-ureach r paraLparaβL-complete 91 on Page 62

p-warden-lantern-ureach k, r paraWLparaβL-complete 94 on Page 65

p-warden-treach k, r paraL-complete 96 on Page 69

p-lantern-treach k, r paraWL 100 on Page 72

p-colored-edge-deletion-reach k paraWNL-complete 101 on Page 72

p-colored1-edge-deletion-reach k paraWNL-complete 101 on Page 72

p-colored1-vertex-selection-reach k paraWNL-complete 101 on Page 72

p-colored1-vertex-deletion-reach k paraWNL-complete 101 on Page 72

p-wardenr=1-reach k paraWNL-complete 102 on Page 72

p-lanternr=1-reach k paraWNL-complete 102 on Page 72

p-wardenk=0-reach r paraNL-complete 103 on Page 73

p-lanternk=0-reach r paraNL-complete 104 on Page 73

p-warden-reach k, r paraWNL-complete 105 on Page 73

p-lantern-reach k, r paraWNL-complete 106 on Page 73

pk-vertex-deletion-reach k paraNL-complete 107 on Page 74

p-cutting-`-vertices k paraWL 110 on Page 79

p-cutting-`-vertices ` paraWTC0 111 on Page 80

p-cutting-`-vertices k, ` paraWAC0 112 on Page 80

p-vertex-bisection k paraWL 115 on Page 81

p-edge-bisection k paraWL 117 on Page 82

p-warden-region-uncover k paraWL-complete 120 on Page 83
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